928 resultados para learning behaviour
Resumo:
The primary purpose of this research was to examine individual differences in learning from worked examples. By integrating cognitive style theory and cognitive load theory, it was hypothesised that an interaction existed between individual cognitive style and the structure and presentation of worked examples in their effect upon subsequent student problem solving. In particular, it was hypothesised that Analytic-Verbalisers, Analytic-Imagers, and Wholist-lmagers would perform better on a posttest after learning from structured-pictorial worked examples than after learning from unstructured worked examples. For Analytic-Verbalisers it was reasoned that the cognitive effort required to impose structure on unstructured worked examples would hinder learning. Alternatively, it was expected that Wholist-Verbalisers would display superior performances after learning from unstructured worked examples than after learning from structured-pictorial worked examples. The images of the structured-pictorial format, incongruent with the Wholist-Verbaliser style, would be expected to split attention between the text and the diagrams. The information contained in the images would also be a source of redundancy and not easily ignored in the integrated structured-pictorial format. Despite a number of authors having emphasised the need to include individual differences as a fundamental component of problem solving within domainspecific subjects such as mathematics, few studies have attempted to investigate a relationship between mathematical or science instructional method, cognitive style, and problem solving. Cognitive style theory proposes that the structure and presentation of learning material is likely to affect each of the four cognitive styles differently. No study could be found which has used Riding's (1997) model of cognitive style as a framework for examining the interaction between the structural presentation of worked examples and an individual's cognitive style. 269 Year 12 Mathematics B students from five urban and rural secondary schools in Queensland, Australia participated in the main study. A factorial (three treatments by four cognitive styles) between-subjects multivariate analysis of variance indicated a statistically significant interaction. As the difficulty of the posttest components increased, the empirical evidence supporting the research hypotheses became more pronounced. The rigour of the study's theoretical framework was further tested by the construction of a measure of instructional efficiency, based on an index of cognitive load, and the construction of a measure of problem-solving efficiency, based on problem-solving time. The consistent empirical evidence within this study that learning from worked examples is affected by an interaction of cognitive style and the structure and presentation of the worked examples emphasises the need to consider individual differences among senior secondary mathematics students to enhance educational opportunities. Implications for teaching and learning are discussed and recommendations for further research are outlined.
Resumo:
Artificial neural network (ANN) learning methods provide a robust and non-linear approach to approximating the target function for many classification, regression and clustering problems. ANNs have demonstrated good predictive performance in a wide variety of practical problems. However, there are strong arguments as to why ANNs are not sufficient for the general representation of knowledge. The arguments are the poor comprehensibility of the learned ANN, and the inability to represent explanation structures. The overall objective of this thesis is to address these issues by: (1) explanation of the decision process in ANNs in the form of symbolic rules (predicate rules with variables); and (2) provision of explanatory capability by mapping the general conceptual knowledge that is learned by the neural networks into a knowledge base to be used in a rule-based reasoning system. A multi-stage methodology GYAN is developed and evaluated for the task of extracting knowledge from the trained ANNs. The extracted knowledge is represented in the form of restricted first-order logic rules, and subsequently allows user interaction by interfacing with a knowledge based reasoner. The performance of GYAN is demonstrated using a number of real world and artificial data sets. The empirical results demonstrate that: (1) an equivalent symbolic interpretation is derived describing the overall behaviour of the ANN with high accuracy and fidelity, and (2) a concise explanation is given (in terms of rules, facts and predicates activated in a reasoning episode) as to why a particular instance is being classified into a certain category.