714 resultados para erbium-doped fiber laser (EDFL)
Resumo:
The structure of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-x)(Y(2)O(3))(x)} (0.1 <= x <= 0.25) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as Y-3d core-level X-ray photoelectron spectroscopy, (11)B magic-angle spinning (MAS) NMR spectra reveal that the majority of the boron atoms are three-coordinated, and a slight increase of four-coordinated boron content with increasing x can be noticed. (27)Al MAS NMR spectra show that the alumina species are present in the coordination states four, five and six. All of them are in intimate contact with both the three- and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, nonsegregated glass structure. For the first time, (89)Y solid state NMR has been used to probe the local environment of Y(3+) ions in a glass-forming system. The intrinsic sensitivity problem associated with (89)Y NMR has been overcome by combining the benefits of paramagnetic doping with those of signal accumulation via Carr-Purcell spin echo trains. Both the (89)Y chemical shifts and the Y-3d core level binding energies are found to be rather sensitive to the yttrium bonding state and reveal that the bonding properties of the yttrium atoms in these glasses are similar to those found in the model compounds YBO(3) and YAl(3)(BO(3))(4), Based on charge balance considerations as well as (11)B NMR line shape analyses, the dominant borate species are concluded to be meta- and pyroborate anions.
Resumo:
To facilitate the design of laser host materials with optimized emission properties, detailed structural information at the atomic level is essential, regarding the local bonding environment of the active ions (distribution over distinct lattice sites) and their extent of local clustering as well as their population distribution over separate micro- or nanophases. The present study explores the potential of solid state NMR spectroscopy to provide such understanding for rare-earth doped lead lanthanum zirconate titanate (PLZT) ceramics. As the NMR signals of the paramagnetic dopant species cannot be observed directly, two complementary approaches are utilized: (1) direct observation of diamagnetic mimics using Sc-45 NMR and (2) study of the paramagnetic interaction of the constituent host lattice nuclei with the rare-earth dopant, using Pb-207 NMR lineshape analysis. Sc-45 MAS NMR spectra of scandium-doped PLZT samples unambiguously reveal scandium to be six-coordinated, suggesting that this rare-earth ion substitutes in the B site. Static Pb-207 spin echo NMR spectra of a series of Tm-doped PLZT samples reveal a clear influence of paramagnetic rare-earth dopant concentration on the NMR lineshape. In the latter case high-fidelity spectra can be obtained by spin echo mapping under systematic incrementation of the excitation frequency, benefiting from the signal-to-noise enhancement afforded by spin echo train Fourier transforms. Consistent with XRD data, the Pb-207 NMR lineshape analysis suggests that statistical incorporation into the PLZT lattice occurs at dopant levels of up to 1 wt.% Tm3+, while at higher levels the solubility limit is reached. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.
Resumo:
The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
70SiO(2)-30HfO(2) planar waveguides, doped with Er(3+) concentrations ranging from 0.3 to 1 mol %, were prepared by sol-gel route, using dip-coating deposition on silica glass substrates. The waveguides show high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 or 514.5 nm continuous-wave laser light, the waveguides show the (4)I(13/2)-->(4)I(15/2) emission band with a bandwidth of 48 nm. The spectral features are found independent both on erbium content and excitation wavelength. The (4)I(13/2) level decay curves presented a single-exponential profile, with a lifetime between 2.9 and 5.0 ms, depending on the erbium concentration. (C) 2002 American Institute of Physics.
Resumo:
We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].
Resumo:
Organic-inorganic hybrid materials were prepared from an ureasil precursor (ureapropyltriethoxysilane designated as UPTES) and acrylic acid modified zirconium (IV) n-propoxide. Thin films containing rhodamine 6G (Rh6G) were prepared by spin-coating on glass substrates with different Zr:Si molar ratios (Zr:Si = 75:25, 50:50 and 25:75). Refractive index, thickness, number of propagating modes and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm wavelengths by the prism coupling technique. Distributed feedback (DFB) laser effect was observed and studied as a function of films thickness and refractive index.
Resumo:
PbO-Bi2O3-Ga2O3 glasses doped with different concentrations of Yb3+ are presented. The spectroscopic properties and laser parameters are calculated and a comparison between different results obtained when calculating the Yb3+ emission cross-section with the reciprocity method and with the Fuchtbauer-Ladenburg formula is presented. The behavior of the near-infrared luminescence is described theoretically by a rate equation and compared with the experimental results. This host doped with Yb3+ is a promising material for laser action at 1019 nm, with properties similar to other known glasses used as active laser media; the emission cross-section of 1.1 x 10(-20) cm(2), the high absorption cross-section (of 2.0 x 10(-20) cm(2)) and a minimum pump intensity of 2.4 kW/cm(2) are interesting properties for short pulse generation. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objective: the purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet laser instrumentation of root surfaces on the morphology of fibroblasts from continuous lineage. Method and materials: Dentinal slices with 4 mm(2) of surface area were obtained from teeth extracted for severe periodontal involvement. Specimens were assigned to one of three treatment groups: group 1, application of the laser with an energy level of 250 mJ at 103 pulses per second; group 2, application of the laser with an energy level of 80 mJ at 166 pulses per second; and group 3, similar to group 2, but with concomitant water irrigation of the device. The specimens were incubated in multiwell plates containing cell culture media. After 24 hours, the specimens were submitted to routine preparation for scanning electron microscopy. Three independent and blind examiners used photomicrographs to evaluate the morphology of the fibroblasts: 0 = without cells; 1 = flat cells; 2 = round cells; and 3 = combination of round and flat cells. Results: Statistical analysis indicated that there were significant differences among treatment groups and that group 3 was significantly different from groups 1 and 2. Conclusion: There was no difference between groups 1 and 2 in the morphology of fibroblasts. Laser instrumentation with concomitant irrigation impaired the adhesion of fibroblasts to dentinal surfaces.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Er3+:LiYF4 single crystal has been studied by absorption and fluorescence spectroscopy in the IR-visible-UV (0-44000 cm-1) region from 4.2 K to room temperature. Polarized spectra were recorded in order to assign numerous Stark levels of electronic transitions mentioned but not attributed before in the related literature and to discuss the irreducible representations (irreps) of the 4I15/2 sublevels. A parametric hamiltonian, including free ion (Eν, α, β, γ, Tλ, ζ, Mk and Pi) and crystal field parameters (B2 0, B4 0, B4 4, B6 0 and B6 4) in an approximate D2d symmetry for the rare earth site in this scheelite type structure, was used to simulate 109 energy positions of the Er ion with a r.m.s. standard deviation of 14.6 cm-1. A comparison with previously published results for Nd3+ in the same matrix is done. © 1998 Elsevier Science S.A.
Resumo:
Objective: The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet laser instrumentation of root surfaces on the morphology of fibroblasts from continuous lineage. Method and materials: Dentinal slices with 4 mm2 of surface area were obtained from teeth extracted for severe periodontal involvement. Specimens were assigned to one of three treatment groups: group 1, application of the laser with an energy level of 250 mJ at 103 pulses per second; group 2, application of the laser with an energy level of 80 mJ at 166 pulses per second; and group 3, similar to group 2, but with concomitant water irrigation of the device. The specimens were incubated in multiwell plates containing cell culture media. After 24 hours, the specimens were submitted to routine preparation for scanning electron microscopy. Three independent and blind examiners used photomicrographs to evaluate the morphology of the fibroblasts: 0 = without cells; 1 = flat cells; 2 = round cells; and 3 = combination of round and flat cells. Results: Statistical analysis indicated that there were significant differences among treatment groups and that group 3 was significantly different from groups 1 and 2. Conclusion: There was no difference between groups 1 and 2 in the morphology of fibroblasts. Laser instrumentation with concomitant irrigation impaired the adhesion of fibroblasts to dentinal surfaces.