Pump excited state absorption in holmium-doped fluoride glass


Autoria(s): Henriques Librantz, Andre Felipe; Jackson, Stuart D.; Gomes, Laercio; Lima Ribeiro, Sidney Jose; Messaddeq, Younes
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

15/01/2008

Resumo

The primary excited state absorption processes relating to the (5)I(6) -> (5)I(7) 3 mu m laser transition in singly Ho(3+)-doped fluoride glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the (5)I(6) and (5)I(7) energy levels established the occurrence of two excited state absorption transitions from these energy levels that compete with previously described energy transfer upconversion processes. The (5)I(7) -> (5)I(4) excited state absorption transition has peak cross sections at 1216 nm (sigma(esa)=2.8x10(-21) cm(2)), 1174 nm (sigma(esa)=1x10(-21) cm(2)), and 1134 nm (sigma(esa)=7.4x10(-22) cm(2)) which have a strong overlap with the (5)I(8) -> (5)I(6) ground state absorption. on the other hand, it was established that the excited state absorption transition (5)I(6) -> (5)S(2) had a weak overlap with ground state absorption. Using numerical solution of the rate equations, we show that Ho(3+)-doped fluoride fiber lasers employing pumping at 1100 nm rely on excited state absorption from the lowest excited state of Ho(3+) to maintain a population inversion and that energy transfer upconversion processes compete detrimentally with the excited state absorption processes in concentrated Ho(3+)-doped fluoride glass. (c) 2008 American Institute of Physics.

Formato

8

Identificador

http://dx.doi.org/10.1063/1.2833436

Journal of Applied Physics. Melville: Amer Inst Physics, v. 103, n. 2, p. 8, 2008.

0021-8979

http://hdl.handle.net/11449/26020

10.1063/1.2833436

WOS:000252821100005

WOS000252821100005.pdf

Idioma(s)

eng

Publicador

American Institute of Physics (AIP)

Relação

Journal of Applied Physics

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article