928 resultados para critical path methods
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
Analytical and bioanalytical methods of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) were developed and validated for the determination of chloroaluminum phthalocyanine in different formulations of polymeric nanocapsules, plasma and livers of mice. Plasma and homogenized liver samples were extracted with ethyl acetate, and zinc phthalocyanine was used as internal standard. The results indicated that the methods were linear and selective for all matrices studied. Analysis of accuracy and precision showed adequate values, with variations lower than 10% in biological samples and lower than 2% in analytical samples. The recoveries were as high as 96% and 99% in the plasma and livers, respectively. The quantification limit of the analytical method was 1.12 ng/ml, and the limits of quantification of the bioanalytical method were 15 ng/ml and 75 ng/g for plasma and liver samples, respectively. The bioanalytical method developed was sensitive in the ranges of 15-100 ng/ml in plasma and 75-500 ng/g in liver samples and was applied to studies of biodistribution and pharmacokinetics of AlClPc. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-The Echoplanar Imaging Thrombolysis Evaluation Trial ( EPITHET) tests the hypothesis that perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch predicts the response to thrombolysis. There is no accepted standardized definition of PWI-DWI mismatch. We compared common mismatch definitions in the initial 40 EPITHET patients. Methods-Raw perfusion images were used to generate maps of time to peak (TTP), mean transit time (MTT), time to peak of the impulse response (Tmax) and first moment transit time (FMT). DWI, apparent diffusion coefficient ( ADC), and PWI volumes were measured with planimetric and thresholding techniques. Correlations between mismatch volume (PWIvol-DWIvol) and DWI expansion (T2(Day) (90-vol)-DWIAcute-vol) were also assessed. Results-Mean age was 68 +/- 11, time to MRI 4.5 +/- 0.7 hours, and median National Institutes of Health Stroke Scale (NIHSS) score 11 (range 4 to 23). Tmax and MTT hypoperfusion volumes were significantly lower than those calculated with TTP and FMT maps (P < 0.001). Mismatch >= 20% was observed in 89% (Tmax) to 92% (TTP/FMT/MTT) of patients. Application of a +4s ( relative to the contralateral hemisphere) PWI threshold reduced the frequency of positive mismatch volumes (TTP 73%/FMT 68%/Tmax 54%/MTT 43%). Mismatch was not significantly different when assessed with ADC maps. Mismatch volume, calculated with all parameters and thresholds, was not significantly correlated with DWI expansion. In contrast, reperfusion was correlated inversely with infarct growth (R= -0.51; P = 0.009). Conclusions-Deconvolution and application of PWI thresholds provide more conservative estimates of tissue at risk and decrease the frequency of mismatch accordingly. The precise definition may not be critical; however, because reperfusion alters tissue fate irrespective of mismatch.
Resumo:
UV-VIS-Spectrophotometric and spectrofluorimetric methods have been developed and validated allowing the quantification of chloroaluminum phthalocyanine (CIAIPc) in nanocarriers. In order to validate the methods, the linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and selectivity were examined according to USP 30 and ICH guidelines. Linearities range were found between 0.50-3.00 mu g.mL(-1) (Y=0.3829 X [CIAIPc, mu g.mL(-1)] + 0.0126; r=0.9992) for spectrophotometry, and 0.05-1.00 mu g.mL(-1) (Y=2.24 x 10(6) X [CIAIPc, mu g.L(-1)] + 9.74 x 10(4); r=0.9978) for spectrofluorimetry. In addition, ANOVA and Lack-of-fit tests demonstrated that the regression equations were statistically significant (p<0.05), and the resulting linear model is fully adequate for both analytical methods. The LOD values were 0.09 and 0.01 mu g.mL(-1), while the LOCI were 0.27 and 0.04 mu g.mL(-1) for spectrophotometric and spectrofluorimetric methods, respectively. Repeatability and intermediate precision for proposed methods showed relative standard deviation (RSD) between 0.58% to 4.80%. The percent recovery ranged from 98.9% to 102.7% for spectrophotometric analyses and from 94.2% to 101.2% for spectrofluorimetry. No interferences from common excipients were detected and both methods were considered specific. Therefore, the methods are accurate, precise, specific, and reproducible and hence can be applied for quantification of CIAIPc in nanoemulsions (NE) and nanocapsules (NC).
Resumo:
There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.
Resumo:
PURPOSE: To determine whether implantation of an aspherical intraocular lens (IOL) results in reduced ocular aberrations and improved contrast sensitivity after cataract surgery without critical reduction of depth of focus. DESIGN: Double-blinded, randomized, prospective study. METHODS: In an intraindividual study of 25 patients with bilateral cataract, an aspherical IOL (Akreos Advanced Optic [AO]; Bausch & Lomb, Inc., Rochester, New York, USA) was implanted in one eye and a spherical IOL (Akreos Fit; Bausch & Lomb, Inc) in the fellow eye. Higher-order aberrations with a 5- and 6-mm pupil were measured with a dynamic retinoscopy aberrometer at 1 and 3 months after surgery. Uncorrected and best-corrected visual acuity and contrast sensitivity under mesopic and photopic conditions also were measured. Distance-corrected near and intermediate visual acuity were studied as a measurement of depth of focus. RESULTS: There was no statistically significant difference between eyes in uncorrected and best-corrected visual acuity at I and 3 months after surgery. There was a statistically significant between-group difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. The Akreos AO group obtained statistically significant lower values of higher-order aberrations and spherical aberration with 5- and 6-mm pupils compared with the Akreos Fit group (P < .05). There was no significant difference in distance-corrected near and intermediate visual acuity between both groups. CONCLUSIONS: Aspherical aberration-free Akreos AO IOL induced significantly less higher-order aberrations and spherical aberration than the Akreos Fit. Contrast sensitivity was better under mesopic conditions with the Akreos AO with similar results of depth of focus. (Am J Ophthalmol 2010;149:383-389. (C) 2010 by Elsevier Inc. All rights reserved.)
Resumo:
Selection of the optimal positive end-expiratory pressure (PEEP) to avoid ventilator-induced lung injury in patients under mechanical ventilation is still a matter of debate. Many methods are available, but none is considered the gold standard. In the previous issue of Critical Care, Zhao and colleagues applied a method based on electrical impedance tomography to help select the PEEP that minimized ventilation inhomogeneities. Though promising when alveolar collapse and overdistension are present, this method might be misleading in patients with normal lungs.
Resumo:
Purpose: Although gastrointestinal motility disorders are common in critically ill patients, constipation and its implications have received very little attention. We aimed to determine the incidence of constipation to find risk factors and its implications in critically ill patients Materials and Methods: During a 6-month period, we enrolled all patients admitted to an intensive care unit from an universitary hospital who stayed 3 or more days. Patients submitted to bowel surgery were excluded. Results: Constipation occurred in 69.9% of the patients. There was no difference between constipated and not constipated in terms of sex, age, Acute Physiology and Chronic Health Evaluation II, type of admission (surgical, clinical, or trauma), opiate use, antibiotic therapy, and mechanical ventilation. Early (<24 hours) enteral nutrition was associated with less constipation, a finding that persisted at multivariable analysis (P < .01). Constipation was not associated with greater intensive care unit or mortality, length of stay, or days free from mechanical ventilation. Conclusions: Constipation is very common among critically ill patients. Early enteral nutrition is associated with earlier return of bowel function. (C) 2009 Elsevier Inc. All rights reserved.