978 resultados para academic integration
Resumo:
Four librarians from Irish university libraries completed the U.K. Future Leaders Programme (FLP) in 2010. In this article they recount their experience and assess the effect of the programme on their professional practice and the value for their institutions. The programme is explored in the context of the Irish higher education environment, which is facing significant challenges due to the demise of the Celtic Tiger economy. A brief review of the literature relating to structured programmes to prepare librarians for senior positions, is presented. The structure and content of the FLP and the learning methodologies, theories, tools and techniques used throughout are discussed. The article suggests that the programme has real value for both individuals and institutions and that it can play a significant role in succession planning and the leadership development of librarians
Resumo:
There are a number of reasons why this researcher has decided to undertake this study into the differences in the social competence of children who attend integrated Junior Infant classes and children who attend segregated learning environments. Theses reasons are both personal and professional. My personal reasons stem from having grown up in a family which included both an aunt who presented with Down Syndrome and an uncle who presented with hearing impairment. Both of these relatives' experiences in our education system are interesting. My aunt was considered ineducable while her brother - my uncle - was sent to Dublin (from Cork) at six years of age to be educated by a religious order. My professional reasons, on the other hand, stemmed from my teaching experience. Having taught in both special and integrated classrooms it became evident to me that there was somewhat 'suspicion' attached to integration. Parents of children without disabilities questioned whether this process would have a negative impact on their children's education. While parents of children with disabilities debated whether integrated settings met the specific needs of their children. On the other hand, I always questioned whether integration and inclusiveness meant the same thing. My research has enabled me to find many answers. Increasingly, children with special educational needs (SEN) are attending a variety of integrated and inclusive childcare and education settings. This contemporary practice of educating children who present with disabilities in mainstream classrooms has stimulated vast interest on the impact of such practices on children with identified disabilities. Indeed, children who present with disabilities "fare far better in mainstream education than in special schools" (Buckley, cited in Siggins, 2001,p.25). However, educators and practitioners in the field of early years education and care are concerned with meeting the needs of all children in their learning environments, while also upholding high academic standards (Putman, 1993). Fundamentally, therefore, integrated education must also produce questions about the impact of this practice on children without identified special educational needs. While these questions can be addressed from the various areas of child development (i.e. cognitive, physical, linguistic, emotional, moral, spiritual and creative), this research focused on the social domain. It investigates the development of social competence in junior infant class children without identified disabilities as they experience different educational settings.
Resumo:
Stress can be understood in terms of the meaning of stressful experiences for individuals. The meaning of stressful experiences involves threats to self-adequacy, where self-adequacy is considered a basic human need. Appropriate research methods are required to explore this aspect of stress. The present study is a qualitative exploration of the stress experienced by a group of 27 students at the National Institute of Higher Education, Limerick (since renamed the University of Limerick). The study was carried out by the resident student counsellor at the college. A model of student stress was explored, based on student developmental needs. The data consist of a series of interviews recorded with each of the 27 students over a 3 month period. These interviews were transcribed and the resulting transcripts are the subject of detailed analysis. The analysis of the data is an account of the sense-making process by the student counsellor of the students' reported experiences. The aim of the analysis was to reduce the large amounts of data to their most salient aspects in an ordered fashion, so as to examine the application of a developmental model of stress with this group of students. There were two key elements to the analysis. First, the raw data were edited to identify the key statements contained in the interviews. Second, the statements were categorised, as a means of summarising the data. The results of the qualitative dataanalysis were then applied to the developmental model. The analysis of data revealed a number of patterns of stress amongst the sample of students. Patterns of academic over-identification, parental conflict and social inadequacy were particularly noteworthy. These patterns consisted of an integration of academic, family and social stresses within a developmental framework. Gender differences with regard to the need for separateness and belonging are highlighted. Appropriate student stress intervention strategies are discussed. Based on the present results, the relationship between stress and development has been highlighted and is recommended as a firm basis for future studies of stress in general and student stress in particular.
Resumo:
The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.
Resumo:
This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.
Resumo:
Silicon (Si) is the base material for electronic technologies and is emerging as a very attractive platform for photonic integrated circuits (PICs). PICs allow optical systems to be made more compact with higher performance than discrete optical components. Applications for PICs are in the area of fibre-optic communication, biomedical devices, photovoltaics and imaging. Germanium (Ge), due to its suitable bandgap for telecommunications and its compatibility with Si technology is preferred over III-V compounds as an integrated on-chip detector at near infrared wavelengths. There are two main approaches for Ge/Si integration: through epitaxial growth and through direct wafer bonding. The lattice mismatch of ~4.2% between Ge and Si is the main problem of the former technique which leads to a high density of dislocations while the bond strength and conductivity of the interface are the main challenges of the latter. Both result in trap states which are expected to play a critical role. Understanding the physics of the interface is a key contribution of this thesis. This thesis investigates Ge/Si diodes using these two methods. The effects of interface traps on the static and dynamic performance of Ge/Si avalanche photodetectors have been modelled for the first time. The thesis outlines the original process development and characterization of mesa diodes which were fabricated by transferring a ~700 nm thick layer of p-type Ge onto n-type Si using direct wafer bonding and layer exfoliation. The effects of low temperature annealing on the device performance and on the conductivity of the interface have been investigated. It is shown that the diode ideality factor and the series resistance of the device are reduced after annealing. The carrier transport mechanism is shown to be dominated by generation–recombination before annealing and by direct tunnelling in forward bias and band-to-band tunnelling in reverse bias after annealing. The thesis presents a novel technique to realise photodetectors where one of the substrates is thinned by chemical mechanical polishing (CMP) after bonding the Si-Ge wafers. Based on this technique, Ge/Si detectors with remarkably high responsivities, in excess of 3.5 A/W at 1.55 μm at −2 V, under surface normal illumination have been measured. By performing electrical and optical measurements at various temperatures, the carrier transport through the hetero-interface is analysed by monitoring the Ge band bending from which a detailed band structure of the Ge/Si interface is proposed for the first time. The above unity responsivity of the detectors was explained by light induced potential barrier lowering at the interface. To our knowledge this is the first report of light-gated responsivity for vertically illuminated Ge/Si photodiodes. The wafer bonding approach followed by layer exfoliation or by CMP is a low temperature wafer scale process. In principle, the technique could be extended to other materials such as Ge on GaAs, or Ge on SOI. The unique results reported here are compatible with surface normal illumination and are capable of being integrated with CMOS electronics and readout units in the form of 2D arrays of detectors. One potential future application is a low-cost Si process-compatible near infrared camera.
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Resumo:
Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.
Cost savings from relaxation of operational constraints on a power system with high wind penetration
Resumo:
Wind energy is predominantly a nonsynchronous generation source. Large-scale integration of wind generation with existing electricity systems, therefore, presents challenges in maintaining system frequency stability and local voltage stability. Transmission system operators have implemented system operational constraints (SOCs) in order to maintain stability with high wind generation, but imposition of these constraints results in higher operating costs. A mixed integer programming tool was used to simulate generator dispatch in order to assess the impact of various SOCs on generation costs. Interleaved day-ahead scheduling and real-time dispatch models were developed to allow accurate representation of forced outages and wind forecast errors, and were applied to the proposed Irish power system of 2020 with a wind penetration of 32%. Savings of at least 7.8% in generation costs and reductions in wind curtailment of 50% were identified when the most influential SOCs were relaxed. The results also illustrate the need to relax local SOCs together with the system-wide nonsynchronous penetration limit SOC, as savings from increasing the nonsynchronous limit beyond 70% were restricted without relaxation of local SOCs. The methodology and results allow for quantification of the costs of SOCs, allowing the optimal upgrade path for generation and transmission infrastructure to be determined.
Resumo:
A report from the inaugural CONUL (Consortium of National & University Libraries) conference held in the Radisson Blu Hotel, Athlone, June 3rd & 4th 2015.
Resumo:
We construct a theory to compare vertically integrated firms to networks of manufacturers and suppliers. Vertically integrated firms make their own specialized inputs. In networks, manufacturers procure specialized inputs from suppliers that, in turn, sell to several manufacturers. The analysis shows that networks can yield greater social welfare when manufacturers experience large idiosyncratic demand shocks. Individual firms may also have the incentive to form networks, despite the lack of long-term contracts. The analysis is supported by existing evidence and provides predictions as to the shape of different industries.
Resumo:
Co-occurrence of HIV and substance abuse is associated with poor outcomes for HIV-related health and substance use. Integration of substance use and medical care holds promise for HIV patients, yet few integrated treatment models have been reported. Most of the reported models lack data on treatment outcomes in diverse settings. This study examined the substance use outcomes of an integrated treatment model for patients with both HIV and substance use at three different clinics. Sites differed by type and degree of integration, with one integrated academic medical center, one co-located academic medical center, and one co-located community health center. Participants (n=286) received integrated substance use and HIV treatment for 12 months and were interviewed at 6-month intervals. We used linear generalized estimating equation regression analysis to examine changes in Addiction Severity Index (ASI) alcohol and drug severity scores. To test whether our treatment was differentially effective across sites, we compared a full model including site by time point interaction terms to a reduced model including only site fixed effects. Alcohol severity scores decreased significantly at 6 and 12 months. Drug severity scores decreased significantly at 12 months. Once baseline severity variation was incorporated into the model, there was no evidence of variation in alcohol or drug score changes by site. Substance use outcomes did not differ by age, gender, income, or race. This integrated treatment model offers an option for treating diverse patients with HIV and substance use in a variety of clinic settings. Studies with control groups are needed to confirm these findings.
Resumo:
Gemstone Team HOPE (Hospital Optimal Productivity Enterprise)
Resumo:
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Resumo:
© 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning.