980 resultados para Spores.
Resumo:
Palynological data from offshore Costa Rica, allow us to investigate the relationship between dinoflagellate cyst assemblages and changes in regional oceanic primary productivity. From Miocene to Pleistocene, productivity at ODP Site 1039 was influenced by tectonic drift, as Site 1039 approached the continent, from the Equator to its current position at ~10°N. In addition, dinoflagellate abundance is modulated by regional productivity events, which modified primary productivity, as also indicated by available data on calcareous nannofossils, diatoms, TOC, and CaCO3 content. Five palynomorph intervals are defined. The early-late Miocene one, dominated by Batiacasphaera, represents relatively stable, productive oceanic conditions before the closure of the Indonesian and Panama Seaways. The late Miocene decrease in palynomorph recovery is related to the Carbonate Crash Event. The high abundance and diversity of the assemblages at the end of the late Miocene to early Pliocene indicate increased productivity related to the Global Biogenic Bloom, and a change in dominance from Batiacasphaera to Impagidinium to Nematosphaeropsis. The low abundance of the late Pliocene interval is related to El Niño-like conditions, and there is another change related to the disappearance of Batiacasphaera and dominance of Impagidinium, Nematosphaeropsis, and Operculodinium. The abundant Pleistocene assemblages represent increased marine productivity, and a high influx of continental palynomorphs and bissacate pollen, associated with the proximity of the Costa Rica Dome. Pleistocene dinoflagellates are characterized by Spiniferites and Selenopemphix, together with rare Impagidinium and Nematosphaeropsis.
Resumo:
Pollen and organic-walled dinoflagellate cyst assemblages from core GeoB 9503-5 retrieved from the mud-belt ( 50 m water depth) off the Senegal River mouth have been analyzed to reconstruct short-term palaeoceanographic and palaeoenvironmental changes in subtropical NW Africa during the time interval from ca. 4200 to 1200 cal yr BP. Our study emphasizes significant coeval changes in continental and oceanic environments in and off Senegal and shows that initial dry conditions were followed by a strong and rapid increase in humidity between ca. 2900 and 2500 cal yr BP. After ca. 2500 cal yr BP, the environment slowly became drier again as indicated by slight increases in Sahelian savannah and desert elements in the pollen record. Around ca. 2200 cal yr BP, this relatively dry period ended with periodic pulses of high terrigenous contributions and strong fluctuations in fern spore and river plume dinoflagellate cyst percentages as well as in the fluxes of pollen, dinoflagellate cysts, fresh-water algae and plant cuticles, suggesting "episodic flash flood" events of the Senegal River. The driest phase developed after about 2100 cal yr BP.
Resumo:
This collection prepared to IX Congress of INQUA containes 25 articles concerning general and regional problems of Pleistocene. The chronological scale of the Late Pliocene and Pleistocene, climatical cycles and methods of the absolute dating are considered. Some data obtained by means ef paleomagnetic, thermoluminescence and radiocarbon methods at several point sections (Likhvin, Rostov-Jarosiavsky, Priasovje, Ob-garm, Chagan, Pryobskoje Plateau, Lower Volga) are given.
Resumo:
Studies of the annual pollen and spore deposition in different areas of the Lena Delta were undertaken for the first time in the Asian sector of the Arctic during the Russian-German ''LENA 98'' and ''LENA 99'' expeditions in the framework of the International ''Laptev Sea System-2000'' Project. To achieve this objective, three spore-pollen traps were set up along the meridional delta profile in accordance with the European Pollen Monitoring Programme for the period July 1998 to August 1999. A comparison between the results of spore-pollen analysis of the contents of traps and the surrounding vegetation was performed. The results confirmed the current spore-pollen spectra are comprised both of pollen and spores of the local plants and of long-distance pollen and spores. The dependence of the long-distance pollen deposition on the character of the wind regime of the region was established. The prevailing southerly and southeasterly wind direction determines the main pollen influx of tree species from the areas of their growth south of the delta. The features of the morphological structure and fossilization of pollen and the features of the productive capability and plant growing conditions are of large significance in the pollen transfer and deposition.
Resumo:
The present investigation was targeted at diatom composition studies in the surface sediments (0-1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80-100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3-60.0 mln per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.
Resumo:
Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.
Resumo:
Based on pollen analysis of a sediment core from the Atlantic Ocean off Liberia the West African vegetation history for the last 400 ka is reconstructed. During the cold oxygen isotope stages 12, 10, 8, 6, 4, 3 and 2 an arid climate is indicated, resulting in a southward shifting of the southern border of the savanna. Late Pleistocene glacial stages were more arid than during the Middle Pleistocene. A persistence of the rain forest in the area, even during the glacial stages, is recorded. This suggests a glacial refuge of rain forest situated in the Guinean mountains. Afromontane forests with Podocarpus occurred in the Guinean mountains from the stages 12 to 2 and disappeared after. The tree expanded from higher to lower elevations twice in the warm oxygen isotope stage 11 (pollen subzones 11d, 11b) and at least twice during the warm stage 5 (pollen subzones 5d, 5a), indicating a relative cool but humid climate for these periods.
Resumo:
Over 100 samples of recent surface sediments from the bottomn of the Atlantic Ocean offshore NW Africa between 34° and 6° N have been analysed palynologically. The objective of this study was to reveal the relation between source areas, transport systems, and resulting distribution patterns of pollen and spores in marine sediments off NW Africa, in order to lay a sound foundation for the interpretation of pollen records of marine cores from this area. The clear zonation of the NW-African vegetation (due to the distinct climatic gradient) is helpful in determining main source areas, and the presence of some major wind belts facilitates the registration of the average course of wind trajectories. The present circulation pattern is driven by the intertropical front (ITCZ) which shifts over the continent between c. 22° N (summer position) and c. 4° N (winter position) in the course of the year. Determination of the period of main pollen release and the average atmospheric circulation pattern effective at that time of the years is of prime importance. The distribution patterns in recent marine sediments of pollen of a series of genera and families appear to record climatological/ecological variables, such as the trajectory of the NE trade, January trades, African Easterly Jet (Saharan Air Layer), the northernmost and southernmost position of the intertropical convergence zone, and the extent and latitudinal situation of the NW-African vegetation belt. Pollen analysis of a series of dated deep-sea cores taken between c. 35° and the equator off NW African enable the construction of paleo-distribution maps for time slices of the past, forming a register of paleoclimatological/paleoecological information.
Resumo:
During the extension of Deep Sea Drilling Project (DSDP) Leg 76 a new and previously unpenetrated lithological unit composed mainly of claystones was cored above basalt basement at Site 534 in the Blake-Bahama Basin. The Callovian part of the new unit contains interbedded 'black shales' which were hitherto unexpected in this part of the section. This Paper presents a brief palynological examination of lithofacies-kerogen relationships in these sediments and shows that their organic content is almost entirely a function of the re-deposition of terrestial and marine organic matter versus the ambient redox conditions of the depositional environment. Allochthonous organic matter inputs are highest in the interbedded turbidites and decline progressively toward the pelagic black shales in which marine organic matter is comparatively well preserved. The significance of various kerogen and palynomorph indices are discussed. The study emphasizes the absolute necessity for sedimentologically-aware sampling in all palynological and geochemical work on lithologically heterogeneous sequences.
Resumo:
Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ~19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ~16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture divergence over the West African realm, thereby extending the Sahel drought for about 4000 years.