875 resultados para Spectral Difference Method
Resumo:
La región cerca de la pared de flujos turbulentos de pared ya está bien conocido debido a su bajo número de Reynolds local y la separación escala estrecha. La región lejos de la pared (capa externa) no es tan interesante tampoco, ya que las estadísticas allí se escalan bien por las unidades exteriores. La región intermedia (capa logarítmica), sin embargo, ha estado recibiendo cada vez más atención debido a su propiedad auto-similares. Además, de acuerdo a Flores et al. (2007) y Flores & Jiménez (2010), la capa logarítmica es más o menos independiente de otras capas, lo que implica que podría ser inspeccionado mediante el aislamiento de otras dos capas, lo que reduciría significativamente los costes computacionales para la simulación de flujos turbulentos de pared. Algunos intentos se trataron después por Mizuno & Jiménez (2013), quien simulan la capa logarítmica sin la región cerca de la pared con estadísticas obtenidas de acuerdo razonablemente bien con los de las simulaciones completas. Lo que más, la capa logarítmica podría ser imitado por otra turbulencia sencillo de cizallamiento de motor. Por ejemplo, Pumir (1996) encontró que la turbulencia de cizallamiento homogéneo estadísticamente estacionario (SS-HST) también irrumpe, de una manera muy similar al proceso de auto-sostenible en flujos turbulentos de pared. Según los consideraciones arriba, esta tesis trata de desvelar en qué medida es la capa logarítmica de canales similares a la turbulencia de cizalla más sencillo, SS-HST, mediante la comparación de ambos cinemática y la dinámica de las estructuras coherentes en los dos flujos. Resultados sobre el canal se muestran mediante Lozano-Durán et al. (2012) y Lozano-Durán & Jiménez (2014b). La hoja de ruta de esta tarea se divide en tres etapas. En primer lugar, SS-HST es investigada por medio de un código nuevo de simulación numérica directa, espectral en las dos direcciones horizontales y compacto-diferencias finitas en la dirección de la cizalla. Sin utiliza remallado para imponer la condición de borde cortante periódica. La influencia de la geometría de la caja computacional se explora. Ya que el HST no tiene ninguna longitud característica externa y tiende a llenar el dominio computacional, las simulaciopnes a largo plazo del HST son ’mínimos’ en el sentido de que contiene sólo unas pocas estructuras media a gran escala. Se ha encontrado que el límite principal es el ancho de la caja de la envergadura, Lz, que establece las escalas de longitud y velocidad de la turbulencia, y que las otras dos dimensiones de la caja debe ser suficientemente grande (Lx > 2LZ, Ly > Lz) para evitar que otras direcciones estando limitado también. También se encontró que las cajas de gran longitud, Lx > 2Ly, par con el paso del tiempo la condición de borde cortante periódica, y desarrollar fuertes ráfagas linealizadas no físicos. Dentro de estos límites, el flujo muestra similitudes y diferencias interesantes con otros flujos de cizalla, y, en particular, con la capa logarítmica de flujos turbulentos de pared. Ellos son exploradas con cierto detalle. Incluyen un proceso autosostenido de rayas a gran escala y con una explosión cuasi-periódica. La escala de tiempo de ruptura es de aproximadamente universales, ~20S~l(S es la velocidad de cizallamiento media), y la disponibilidad de dos sistemas de ruptura diferentes permite el crecimiento de las ráfagas a estar relacionado con algo de confianza a la cizalladura de turbulencia inicialmente isotrópico. Se concluye que la SS-HST, llevado a cabo dentro de los parámetros de cílculo apropiados, es un sistema muy prometedor para estudiar la turbulencia de cizallamiento en general. En segundo lugar, las mismas estructuras coherentes como en los canales estudiados por Lozano-Durán et al. (2012), es decir, grupos de vórticidad (fuerte disipación) y Qs (fuerte tensión de Reynolds tangencial, -uv) tridimensionales, se estudia mediante simulación numérica directa de SS-HST con relaciones de aspecto de cuadro aceptables y número de Reynolds hasta Rex ~ 250 (basado en Taylor-microescala). Se discute la influencia de la intermitencia de umbral independiente del tiempo. Estas estructuras tienen alargamientos similares en la dirección sentido de la corriente a las familias separadas en los canales hasta que son de tamaño comparable a la caja. Sus dimensiones fractales, longitudes interior y exterior como una función del volumen concuerdan bien con sus homólogos de canales. El estudio sobre sus organizaciones espaciales encontró que Qs del mismo tipo están alineados aproximadamente en la dirección del vector de velocidad en el cuadrante al que pertenecen, mientras Qs de diferentes tipos están restringidos por el hecho de que no debe haber ningún choque de velocidad, lo que hace Q2s (eyecciones, u < 0,v > 0) y Q4s (sweeps, u > 0,v < 0) emparejado en la dirección de la envergadura. Esto se verifica mediante la inspección de estructuras de velocidad, otros cuadrantes como la uw y vw en SS-HST y las familias separadas en el canal. La alineación sentido de la corriente de Qs ligada a la pared con el mismo tipo en los canales se debe a la modulación de la pared. El campo de flujo medio condicionado a pares Q2-Q4 encontró que los grupos de vórticidad están en el medio de los dos, pero prefieren los dos cizalla capas alojamiento en la parte superior e inferior de Q2s y Q4s respectivamente, lo que hace que la vorticidad envergadura dentro de las grupos de vórticidad hace no cancele. La pared amplifica la diferencia entre los tamaños de baja- y alta-velocidad rayas asociados con parejas de Q2-Q4 se adjuntan como los pares alcanzan cerca de la pared, el cual es verificado por la correlación de la velocidad del sentido de la corriente condicionado a Q2s adjuntos y Q4s con diferentes alturas. Grupos de vórticidad en SS-HST asociados con Q2s o Q4s también están flanqueadas por un contador de rotación de los vórtices sentido de la corriente en la dirección de la envergadura como en el canal. La larga ’despertar’ cónica se origina a partir de los altos grupos de vórticidad ligada a la pared han encontrado los del Álamo et al. (2006) y Flores et al. (2007), que desaparece en SS-HST, sólo es cierto para altos grupos de vórticidad ligada a la pared asociados con Q2s pero no para aquellos asociados con Q4s, cuyo campo de flujo promedio es en realidad muy similar a la de SS-HST. En tercer lugar, las evoluciones temporales de Qs y grupos de vórticidad se estudian mediante el uso de la método inventado por Lozano-Durán & Jiménez (2014b). Las estructuras se clasifican en las ramas, que se organizan más en los gráficos. Ambas resoluciones espaciales y temporales se eligen para ser capaz de capturar el longitud y el tiempo de Kolmogorov puntual más probable en el momento más extrema. Debido al efecto caja mínima, sólo hay un gráfico principal consiste en casi todas las ramas, con su volumen y el número de estructuras instantáneo seguien la energía cinética y enstrofía intermitente. La vida de las ramas, lo que tiene más sentido para las ramas primarias, pierde su significado en el SS-HST debido a las aportaciones de ramas primarias al total de Reynolds estrés o enstrofía son casi insignificantes. Esto también es cierto en la capa exterior de los canales. En cambio, la vida de los gráficos en los canales se compara con el tiempo de ruptura en SS-HST. Grupos de vórticidad están asociados con casi el mismo cuadrante en términos de sus velocidades medias durante su tiempo de vida, especialmente para los relacionados con las eyecciones y sweeps. Al igual que en los canales, las eyecciones de SS-HST se mueven hacia arriba con una velocidad promedio vertical uT (velocidad de fricción) mientras que lo contrario es cierto para los barridos. Grupos de vórticidad, por otra parte, son casi inmóvil en la dirección vertical. En la dirección de sentido de la corriente, que están advección por la velocidad media local y por lo tanto deforman por la diferencia de velocidad media. Sweeps y eyecciones se mueven más rápido y más lento que la velocidad media, respectivamente, tanto por 1.5uT. Grupos de vórticidad se mueven con la misma velocidad que la velocidad media. Se verifica que las estructuras incoherentes cerca de la pared se debe a la pared en vez de pequeño tamaño. Los resultados sugieren fuertemente que las estructuras coherentes en canales no son especialmente asociado con la pared, o incluso con un perfil de cizalladura dado. ABSTRACT Since the wall-bounded turbulence was first recognized more than one century ago, its near wall region (buffer layer) has been studied extensively and becomes relatively well understood due to the low local Reynolds number and narrow scale separation. The region just above the buffer layer, i.e., the logarithmic layer, is receiving increasingly more attention nowadays due to its self-similar property. Flores et al. (20076) and Flores & Jim´enez (2010) show that the statistics of logarithmic layer is kind of independent of other layers, implying that it might be possible to study it separately, which would reduce significantly the computational costs for simulations of the logarithmic layer. Some attempts were tried later by Mizuno & Jimenez (2013), who simulated the logarithmic layer without the buffer layer with obtained statistics agree reasonably well with those of full simulations. Besides, the logarithmic layer might be mimicked by other simpler sheardriven turbulence. For example, Pumir (1996) found that the statistically-stationary homogeneous shear turbulence (SS-HST) also bursts, in a manner strikingly similar to the self-sustaining process in wall-bounded turbulence. Based on these considerations, this thesis tries to reveal to what extent is the logarithmic layer of channels similar to the simplest shear-driven turbulence, SS-HST, by comparing both kinematics and dynamics of coherent structures in the two flows. Results about the channel are shown by Lozano-Dur´an et al. (2012) and Lozano-Dur´an & Jim´enez (20146). The roadmap of this task is divided into three stages. First, SS-HST is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, longterm simulations of HST are ‘minimal’ in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx > 2LZ, Ly > Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx > 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wallbounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ~ 20S~l (S is the mean shear rate), and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general. Second, the same coherent structures as in channels studied by Lozano-Dur´an et al. (2012), namely three-dimensional vortex clusters (strong dissipation) and Qs (strong tangential Reynolds stress, -uv), are studied by direct numerical simulation of SS-HST with acceptable box aspect ratios and Reynolds number up to Rex ~ 250 (based on Taylor-microscale). The influence of the intermittency to time-independent threshold is discussed. These structures have similar elongations in the streamwise direction to detached families in channels until they are of comparable size to the box. Their fractal dimensions, inner and outer lengths as a function of volume agree well with their counterparts in channels. The study about their spatial organizations found that Qs of the same type are aligned roughly in the direction of the velocity vector in the quadrant they belong to, while Qs of different types are restricted by the fact that there should be no velocity clash, which makes Q2s (ejections, u < 0, v > 0) and Q4s (sweeps, u > 0, v < 0) paired in the spanwise direction. This is verified by inspecting velocity structures, other quadrants such as u-w and v-w in SS-HST and also detached families in the channel. The streamwise alignment of attached Qs with the same type in channels is due to the modulation of the wall. The average flow field conditioned to Q2-Q4 pairs found that vortex clusters are in the middle of the pair, but prefer to the two shear layers lodging at the top and bottom of Q2s and Q4s respectively, which makes the spanwise vorticity inside vortex clusters does not cancel. The wall amplifies the difference between the sizes of low- and high-speed streaks associated with attached Q2-Q4 pairs as the pairs reach closer to the wall, which is verified by the correlation of streamwise velocity conditioned to attached Q2s and Q4s with different heights. Vortex clusters in SS-HST associated with Q2s or Q4s are also flanked by a counter rotating streamwise vortices in the spanwise direction as in the channel. The long conical ‘wake’ originates from tall attached vortex clusters found by del A´ lamo et al. (2006) and Flores et al. (2007b), which disappears in SS-HST, is only true for tall attached vortices associated with Q2s but not for those associated with Q4s, whose averaged flow field is actually quite similar to that in SS-HST. Third, the temporal evolutions of Qs and vortex clusters are studied by using the method invented by Lozano-Dur´an & Jim´enez (2014b). Structures are sorted into branches, which are further organized into graphs. Both spatial and temporal resolutions are chosen to be able to capture the most probable pointwise Kolmogorov length and time at the most extreme moment. Due to the minimal box effect, there is only one main graph consist by almost all the branches, with its instantaneous volume and number of structures follow the intermittent kinetic energy and enstrophy. The lifetime of branches, which makes more sense for primary branches, loses its meaning in SS-HST because the contributions of primary branches to total Reynolds stress or enstrophy are almost negligible. This is also true in the outer layer of channels. Instead, the lifetime of graphs in channels are compared with the bursting time in SS-HST. Vortex clusters are associated with almost the same quadrant in terms of their mean velocities during their life time, especially for those related with ejections and sweeps. As in channels, ejections in SS-HST move upwards with an average vertical velocity uτ (friction velocity) while the opposite is true for sweeps. Vortex clusters, on the other hand, are almost still in the vertical direction. In the streamwise direction, they are advected by the local mean velocity and thus deformed by the mean velocity difference. Sweeps and ejections move faster and slower than the mean velocity respectively, both by 1.5uτ . Vortex clusters move with the same speed as the mean velocity. It is verified that the incoherent structures near the wall is due to the wall instead of small size. The results suggest that coherent structures in channels are not particularly associated with the wall, or even with a given shear profile.
Resumo:
We report a general method for screening, in solution, the impact of deviations from canonical Watson-Crick composition on the thermodynamic stability of nucleic acid duplexes. We demonstrate how fluorescence resonance energy transfer (FRET) can be used to detect directly free energy differences between an initially formed “reference” duplex (usually a Watson-Crick duplex) and a related “test” duplex containing a lesion/alteration of interest (e.g., a mismatch, a modified, a deleted, or a bulged base, etc.). In one application, one titrates into a solution containing a fluorescently labeled, FRET-active, reference duplex, an unlabeled, single-stranded nucleic acid (test strand), which may or may not compete successfully to form a new duplex. When a new duplex forms by strand displacement, it will not exhibit FRET. The resultant titration curve (normalized fluorescence intensity vs. logarithm of test strand concentration) yields a value for the difference in stability (free energy) between the newly formed, test strand-containing duplex and the initial reference duplex. The use of competitive equilibria in this assay allows the measurement of equilibrium association constants that far exceed the magnitudes accessible by conventional titrimetric techniques. Additionally, because of the sensitivity of fluorescence, the method requires several orders of magnitude less material than most other solution methods. We discuss the advantages of this method for detecting and characterizing any modification that alters duplex stability, including, but not limited to, mutagenic lesions. We underscore the wide range of accessible free energy values that can be defined by this method, the applicability of the method in probing for a myriad of nucleic acid variations, such as single nucleotide polymorphisms, and the potential of the method for high throughput screening.
Resumo:
Approximately 250,000 measurements made for the pCO2 difference between surface water and the marine atmosphere, ΔpCO2, have been assembled for the global oceans. Observations made in the equatorial Pacific during El Nino events have been excluded from the data set. These observations are mapped on the global 4° × 5° grid for a single virtual calendar year (chosen arbitrarily to be 1990) representing a non-El Nino year. Monthly global distributions of ΔpCO2 have been constructed using an interpolation method based on a lateral advection–diffusion transport equation. The net flux of CO2 across the sea surface has been computed using ΔpCO2 distributions and CO2 gas transfer coefficients across sea surface. The annual net uptake flux of CO2 by the global oceans thus estimated ranges from 0.60 to 1.34 Gt-C⋅yr−1 depending on different formulations used for wind speed dependence on the gas transfer coefficient. These estimates are subject to an error of up to 75% resulting from the numerical interpolation method used to estimate the distribution of ΔpCO2 over the global oceans. Temperate and polar oceans of the both hemispheres are the major sinks for atmospheric CO2, whereas the equatorial oceans are the major sources for CO2. The Atlantic Ocean is the most important CO2 sink, providing about 60% of the global ocean uptake, while the Pacific Ocean is neutral because of its equatorial source flux being balanced by the sink flux of the temperate oceans. The Indian and Southern Oceans take up about 20% each.
Resumo:
Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.
Resumo:
The helix-coil transition equilibrium of polypeptides in aqueous solution was studied by molecular dynamics simulation. The peptide growth simulation method was introduced to generate dynamic models of polypeptide chains in a statistical (random) coil or an alpha-helical conformation. The key element of this method is to build up a polypeptide chain during the course of a molecular transformation simulation, successively adding whole amino acid residues to the chain in a predefined conformation state (e.g., alpha-helical or statistical coil). Thus, oligopeptides of the same length and composition, but having different conformations, can be incrementally grown from a common precursor, and their relative conformational free energies can be calculated as the difference between the free energies for growing the individual peptides. This affords a straightforward calculation of the Zimm-Bragg sigma and s parameters for helix initiation and helix growth. The calculated sigma and s parameters for the polyalanine alpha-helix are in reasonable agreement with the experimental measurements. The peptide growth simulation method is an effective way to study quantitatively the thermodynamics of local protein folding.
Resumo:
A temperature jump (T-jump) method capable of initiating thermally induced processes on the picosecond time scale in aqueous solutions is introduced. Protein solutions are heated by energy from a laser pulse that is absorbed by homogeneously dispersed molecules of the dye crystal violet. These act as transducers by releasing the energy as heat to cause a T-jump of up to 10 K with a time resolution of 70 ps. The method was applied to the unfolding of RNase A. At pH 5.7 and 59 degrees C, a T-jump of 3-6 K induced unfolding which was detected by picosecond transient infrared spectroscopy of the amide I region between 1600 and 1700 cm-1. The difference spectral profile at 3.5 ns closely resembled that found for the equilibrium (native-unfolded) states. The signal at 1633 cm-1, corresponding to the beta-sheet structure, achieved 15 +/- 2% of the decrease found at equilibrium, within 5.5 ns. However, no decrease in absorbance was detected until 1 ns after the T-ump. The disruption of beta-sheet therefore appears to be subject to a delay of approximately 1 ns. Prior to 1 ns after the T-jump, water might be accessing the intact hydrophobic regions.
Resumo:
This mixed method study aimed to redress the gap in the literature on academic service-learning partnerships, especially in Eastern settings. It utilized Enos and Morton's (2003) theoretical framework to explore these partnerships at the American University in Cairo (AUC). Seventy-nine community partners, administrators, faculty members, and students from a diverse range of age, citizenship, racial, educational, and professional backgrounds participated in the study. Qualitative interviews were conducted with members of these four groups, and a survey with both close-ended and open-ended questions administered to students yielded 61 responses. Qualitative analyses revealed that the primary motivators for partners' engagement in service-learning partnerships included contributing to the community, enhancing students' learning and growth, and achieving the civic mission of the University. These partnerships were characterized by short-term relationships with partners' aspiring to progress toward long-term commitments. The challenges to these partnerships included issues pertaining to the institution, partnering organizations, culture, politics, pedagogy, students, and faculty members. Key strategies for improving these partnerships included institutionalizing service-learning in the University and cultivating an institutional culture supportive of community engagement. Quantitative analyses showed statistically significant relationships between students' scores on the Community Awareness and Interpersonal Effectiveness scales and their overall participation in community service activities inside and outside the classroom, as well as a statistically significant difference between their scores on the Community Awareness scale and department offering service-learning courses. The study's outcomes underscore the role of the local culture in shaping service-learning partnerships, as well as the role of both curricular and extracurricular activities in boosting students' awareness of their community and interpersonal effectiveness. Cultivating a culture of community engagement and building support mechanisms for engaged scholarship are among the critical steps required by public policy-makers in Egypt to promote service-learning in Egyptian higher education. Institutionalizing service-learning partnerships at AUC and enhancing the visibility of these partnerships on campus and in the community are essential to the future growth of these collaborations. Future studies should explore factors affecting community partners' satisfaction with these partnerships, top-down and bottom-up support to service-learning, the value of reflection to faculty members, and the influence of students' economic backgrounds on their involvement in service-learning partnerships.
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.
Resumo:
Bedforms both reflect and influence shallow water hydrodynamics and sediment dynamics. A correct characterization of their spatial distribution and dimensions is required for the understanding, assessment and prediction of numerous coastal processes. A method to parameterize geometrical characteristics using two-dimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct morphological regions. The most energetic peak and the slope and intercept of the power-law showed high values above the crest of the primary bedforms and scour holes, low values in areas without bedforms, and intermediate values in areas with secondary bedforms. The secondary bedform dimensions and orientations were calculated. An area of 700x700 m was used to determine the characteristics of the primary bedforms. However, they were less distinctively characterized compared to the secondary bedforms due to relatively large variations in their orientations and wavelengths. The method is thus appropriate for morphological classification of the seabed and for bedform characterization, being most efficient in areas characterized by bedforms with regular dimensions and directions.
Resumo:
Two main alternating facies were observed at Ocean Drilling Program (ODP) Site 1165, drilled in 3357 m water depth into the Wild Drift (Cooperation Sea, Antarctica): a dark gray, laminated, terrigenous one (interpreted as muddy contourites) and a greenish, homogeneous, biogenic and coarse fraction-bearing one (interpreted as hemipelagic deposits with ice rafted debris [IRD]). These two cyclically alternating facies reflect orbitally driven changes (Milankovitch periodicities) recorded in spectral reflectance, bulk density, and magnetic susceptibility data and opal content changes. Superimposed on these short-term variations, significant uphole changes in average sedimentation rates, total clay content, IRD amount, and mineral composition were interpreted to represent the long-term lower to upper Miocene transition from a temperate climate to a cold-climate glaciation. The analysis of the short-term variations (interpreted to reflect ice sheet expansions controlled by 41-k.y. insolation changes) requires a quite closely spaced sampled record like that provided by the archive multisensor track. Among those, cycles are best described by spectral reflectance data and, in particular, by a parameter calculated as the ratio of the reflectivity in the green color band and the average reflectivity (gray). In this data report a numerical evaluation of spectral reflectance data was performed and substantiated by correlation with core photos to provide an objective description of the color variations within Site 1165 sediments. The resulting color description provides a reference to categorize the available samples in terms of facies and, hence, a framework for further analyses. Moreover, a link between visually described features and numerical series suitable for spectral analyses is provided.
Resumo:
PURPOSE To evaluate image contrast and color setting on assessment of retinal structures and morphology in spectral-domain optical coherence tomography. METHODS Two hundred and forty-eight Spectralis spectral-domain optical coherence tomography B-scans of 62 patients were analyzed by 4 readers. B-scans were extracted in 4 settings: W + N = white background with black image at normal contrast 9; W + H = white background with black image at maximum contrast 16; B + N = black background with white image at normal contrast 12; B + H = black background with white image at maximum contrast 16. Readers analyzed the images to identify morphologic features. Interreader correlation was calculated. Differences between Fleiss-kappa correlation coefficients were examined using bootstrap method. Any setting with significantly higher correlation coefficient was deemed superior for evaluating specific features. RESULTS Correlation coefficients differed among settings. No single setting was superior for all respective spectral-domain optical coherence tomography parameters (P = 0.3773). Some variables showed no differences among settings. Hard exudates and subretinal fluid were best seen with B + H (κ = 0.46, P = 0.0237 and κ = 0.78, P = 0.002). Microaneurysms were best seen with W + N (κ = 0.56, P = 0.025). Vitreomacular interface, enhanced transmission signal, and epiretinal membrane were best identified using all color/contrast settings together (κ = 0.44, P = 0.042, κ = 0.57, P = 0.01, and κ = 0.62, P ≤ 0.0001). CONCLUSION Contrast and background affect the evaluation of retinal structures on spectral-domain optical coherence tomography images. No single setting was superior for all features, though certain changes were best seen with specific settings.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper we apply a new method for the determination of surface area of carbonaceous materials, using the local surface excess isotherms obtained from the Grand Canonical Monte Carlo simulation and a concept of area distribution in terms of energy well-depth of solid–fluid interaction. The range of this well-depth considered in our GCMC simulation is from 10 to 100 K, which is wide enough to cover all carbon surfaces that we dealt with (for comparison, the well-depth for perfect graphite surface is about 58 K). Having the set of local surface excess isotherms and the differential area distribution, the overall adsorption isotherm can be obtained in an integral form. Thus, given the experimental data of nitrogen or argon adsorption on a carbon material, the differential area distribution can be obtained from the inversion process, using the regularization method. The total surface area is then obtained as the area of this distribution. We test this approach with a number of data in the literature, and compare our GCMC-surface area with that obtained from the classical BET method. In general, we find that the difference between these two surface areas is about 10%, indicating the need to reliably determine the surface area with a very consistent method. We, therefore, suggest the approach of this paper as an alternative to the BET method because of the long-recognized unrealistic assumptions used in the BET theory. Beside the surface area obtained by this method, it also provides information about the differential area distribution versus the well-depth. This information could be used as a microscopic finger-print of the carbon surface. It is expected that samples prepared from different precursors and different activation conditions will have distinct finger-prints. We illustrate this with Cabot BP120, 280 and 460 samples, and the differential area distributions obtained from the adsorption of argon at 77 K and nitrogen also at 77 K have exactly the same patterns, suggesting the characteristics of this carbon.
Resumo:
This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Most magnetic resonance imaging (MRI) spatial encoding techniques employ low-frequency pulsed magnetic field gradients that undesirably induce multiexponentially decaying eddy currents in nearby conducting structures of the MRI system. The eddy currents degrade the switching performance of the gradient system, distort the MRI image, and introduce thermal loads in the cryostat vessel and superconducting MRI components. Heating of superconducting magnets due to induced eddy currents is particularly problematic as it offsets the superconducting operating point, which can cause a system quench. A numerical characterization of transient eddy current effects is vital for their compensation/control and further advancement of the MRI technology as a whole. However, transient eddy current calculations are particularly computationally intensive. In large-scale problems, such as gradient switching in MRI, conventional finite-element method (FEM)-based routines impose very large computational loads during generation/solving of the system equations. Therefore, other computational alternatives need to be explored. This paper outlines a three-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates for the modeling of low-frequency transient eddy currents in MRI, as an extension to the recently proposed time-harmonic scheme. The weakly coupled Maxwell's equations are adapted to the low-frequency regime by downscaling the speed of light constant, which permits the use of larger FDTD time steps while maintaining the validity of the Courant-Friedrich-Levy stability condition. The principal hypothesis of this work is that the modified FDTD routine can be employed to analyze pulsed-gradient-induced, transient eddy currents in superconducting MRI system models. The hypothesis is supported through a verification of the numerical scheme on a canonical problem and by analyzing undesired temporal eddy current effects such as the B-0-shift caused by actively shielded symmetric/asymmetric transverse x-gradient head and unshielded z-gradient whole-body coils operating in proximity to a superconducting MRI magnet.