11 resultados para Spectral Difference Method

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study addresses the problem of obtaining reliable velocities and displacements from accelerograms, a concern which often arises in earthquake engineering. A closed-form acceleration expression with random parameters is developed to test any strong-motion accelerogram processing method. Integration of this analytical time history yields the exact velocities, displacements and Fourier spectra. Noise and truncation can also be added. A two-step testing procedure is proposed and the original Volume II routine is used as an illustration. The main sources of error are identified and discussed. Although these errors may be reduced, it is impossible to extract the true time histories from an analog or digital accelerogram because of the uncertain noise level and missing data. Based on these uncertainties, a probabilistic approach is proposed as a new accelerogram processing method. A most probable record is presented as well as a reliability interval which reflects the level of error-uncertainty introduced by the recording and digitization process. The data is processed in the frequency domain, under assumptions governing either the initial value or the temporal mean of the time histories. This new processing approach is tested on synthetic records. It induces little error and the digitization noise is adequately bounded. Filtering is intended to be kept to a minimum and two optimal error-reduction methods are proposed. The "noise filters" reduce the noise level at each harmonic of the spectrum as a function of the signal-to-noise ratio. However, the correction at low frequencies is not sufficient to significantly reduce the drifts in the integrated time histories. The "spectral substitution method" uses optimization techniques to fit spectral models of near-field, far-field or structural motions to the amplitude spectrum of the measured data. The extremes of the spectrum of the recorded data where noise and error prevail are then partly altered, but not removed, and statistical criteria provide the choice of the appropriate cutoff frequencies. This correction method has been applied to existing strong-motion far-field, near-field and structural data with promising results. Since this correction method maintains the whole frequency range of the record, it should prove to be very useful in studying the long-period dynamics of local geology and structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis.

As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California.

Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2~s-2.0~s) empirical Green's function synthetics on top of long-period ($>$ 2.0~s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms.

Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.

Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.

Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.

Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.

The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.

In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.

Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.

Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.

Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.

This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.

Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I:

The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.

Part II:

When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain is a network spanning multiple scales from subcellular to macroscopic. In this thesis I present four projects studying brain networks at different levels of abstraction. The first involves determining a functional connectivity network based on neural spike trains and using a graph theoretical method to cluster groups of neurons into putative cell assemblies. In the second project I model neural networks at a microscopic level. Using diferent clustered wiring schemes, I show that almost identical spatiotemporal activity patterns can be observed, demonstrating that there is a broad neuro-architectural basis to attain structured spatiotemporal dynamics. Remarkably, irrespective of the precise topological mechanism, this behavior can be predicted by examining the spectral properties of the synaptic weight matrix. The third project introduces, via two circuit architectures, a new paradigm for feedforward processing in which inhibitory neurons have the complex and pivotal role in governing information flow in cortical network models. Finally, I analyze axonal projections in sleep deprived mice using data collected as part of the Allen Institute's Mesoscopic Connectivity Atlas. After normalizing for experimental variability, the results indicate there is no single explanatory difference in the mesoscale network between control and sleep deprived mice. Using machine learning techniques, however, animal classification could be done at levels significantly above chance. This reveals that intricate changes in connectivity do occur due to chronic sleep deprivation.