950 resultados para Soybean Oil
Resumo:
Single-walled carbon nanohorns (SWCNHs) were used as a novel and biocompatible matrix for fabricating biosensing devices. The direct immobilization of acid-stable and thermostable soybean peroxidase (SBP) on SWCNH modified electrode surface can realize the direct electrochemistry of enzyme. Cyclic voltammogram of the adsorbed SBP displays a pair of redox peaks with a formal potential of -0.24V in pH 5 phosphate buffer solution.
Resumo:
Colloidal CdSe and CdS quantum dots were synthesized at low temperatures (60-90 degrees C) by a two-phase approach at a toluene-water interface. Oil-soluble cadmium myristate (Cd-MA) was used as cadmium source, and water-soluble Na2S, thiourea, NaHSe, Na2SeSO3, and selenourea were used as sulfur and selenium sources, respectively. When a cadmium precursor in toluene and a selenium precursor in water were mixed, CdSe nanocrystals were achieved at a toluene-water interface in the range of 1.2-3.2 nm in diameter. Moreover, we also synthesized highly luminescent CdSe/CdS core-shell quantum dots by a two-phase approach using poorly reactive thiourea as sulfur source in an autoclave at 140 degrees C or under normal pressure at 90 degrees C. Colloidal solutions of CdSe/CdS core-shell nanocrystals exhibit a photoluminescence quantum yield (PL QY) up to 42% relative to coumarin 6 at room temperature.
Resumo:
In this study, KMgF3:Eu2+ luminescent nanocrystals (NCs) were prepared in water/cetyltrimethylammonium bromide (CTAB)/2-octanol microemulsions. The KMgF3:Eu2+ NCs were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), fluorescence spectrum, infrared spectroscopy (IR) and elementary analysis. The results showed that the size of the KMgF3:Eu2+ NCs was hardly affected by water content and surfactant (CTAB) concentration. The emission spectrum showed that the position of the 362 nm peak is due to the K+ sites substituted Eu2+. Two emission peaks located at 589 and 612 nm can be attributed to Eu3+, which exist at two different types of Eu3+ centers: one is Eu3+ at a K+ site, the other is clustering of Eu3+ ions in the interstices of KMgF3 host lattice.
Resumo:
Uniform platinum nanodendrites have been prepared at a water/oil interface by a facile catalyst-free method at room temperature. This is carried out by introducing NaBH4 into the platinum precursor solution in the presence of the second generation of carboxyl-cored dendrimer ([G-2]-CO2H dendrimer) and toluene to act as a protective agent and a linker, respectively. The average fractal dimension of 1.61 of the obtained platinum nanodendrites is calculated by analysing the transmission electron micrographs using the programs Fractal Dimension Version 1.1 and Fractal Dimension Calculator. Control experiments show that the fabrication of platinum nanodendrites can be operated with a wide parameter window, which undoubtedly raises the degree of control of the synthesis process. The potential application of such a nanostructure as a catalyst is investigated, and the results reveal that they show highly efficient catalytic properties for the typical redox reaction between hexacyanoferrate (III) and thiosulfate ions at 301 K.
Resumo:
Major, minor and trace elemental contents in northeast China soybeans were determined by using inductively, coupled plasma atomic emission spectrometry (ICP-AES). Three different sample digestion methods including two wet digestions, HNO3-HClO4 and HNO3-H2SO4 and a dry ash method were compared. Owing to the high oil content in soybeans, long time is needed and access acid should be added, with mixed acid digestion methods, which may result in higher sample blank. Therefore, the dry ask method would be more proper for the pre-treatment of soybean samples. Potassium and phosphorus are major elements in soybeans, so the effect of potassium and phosphorus on the other elements was investigated. Results showed that the potassium and phosphorus did not affect the determination. of other trace elements. There are not significant differences in trace elemental contents for the eleven northeast China soybeans.
Resumo:
The essential oil in purple magnolia leaves was extracted by steam distillation approaches. The oil obtained was dried with anhydrous magnesium sulfate. According to the analysis of gas chromatography/mass spectrometry, more than 40 peaks were separated and 32 compounds were identified. The identified constituents represent 95% of the peak area of the essential oil. The main compounds were germacrene-D, santolina triene, caryophyllene, 1,3,7-octatriene, 3,7-dimethyl, and camphene, etc.
Resumo:
A peroxidase was extracted from Chinese soybean seed coat, and its thermostability and acid-stability were characterized. This peroxidase was immobilized into a self-gelatinizable grafting copolymer of polyvinyl alcohol with 4-vinylpyridine(PVA-g-PVP) to construct an acid-stable hydrogen peroxide biosensor. The effect of pH was studied for optimum analytical performances by amperometric and spectro-photometric methods, also the K-m(app) and the stability of the soybean peroxidase-based biosensor are discussed. At pH 3.0, the soybean peroxidase maintained its bioactivity and the enzyme electrode had a linear range from 0.01 to 6.2 mM with a detection limit of 1.0 x 10(-7) M. In addition, the main characteristics of different hydrogen peroxide sensors were compared.
Resumo:
An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).
Resumo:
Using the LAMP method, a highly specific and sensitive detection system for genetically modified soybean (Roundup Ready) was designed. In this detection system, a set of four primers was designed by targeting the exogenous 35S epsps gene. Target DNA was amplified and visualized on agarose gel within 45 min under isothermal conditions at 65 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by the addition of SYBR Green I for naked-eye inspection. The detection sensitivity of LAMP was 10-fold higher than the nested PCR established in our laboratory. Moreover, the LAMP method was much quicker, taking only 70 min, as compared with 300 min for nested PCR to complete the analysis of the GM soybean. Compared with traditional PCR approaches, the LAMP procedure is faster and more sensitive, and there is no need for a special PCR machine or electrophoresis equipment. Hence, this method can be a very useful tool for GMO detection and is particularly convenient for fast screening.
Resumo:
Known only in the Phaeophyceae, phlorotannins (brown algal polyphenols) are a class of natural products with potential uses in pharmacology. This study reports that phlorotannins from Sargassum kjellmanianum can prevent fish oil from rancidification; the antioxidation activity was about 2.6 times higher than that of 0.02% BHT (tertbutyl-4-hydroxytoluene).
Resumo:
In order to develop and make good use of Nitraria tangutorum Bobr. in Qinghai-Tibetan Plateau for its ecological and medicinal values, the seed oil was extracted by SFE-CQ2 and the chemical constituents was analyzed by GC/MS. The component relative contents were determined by area nomalization. 28 components were separated from the extracts of SFE-CQj and 12 of them, which accounted for 85.99% were identified. They were(Z, Z)-9, 12-octadecadienoic acid (linoleic acid), bicyclo[ 10. 1. 0] tridec-1-ene, 7-pentadecyne, gamma-sitosterol, gamma-tocopherol, 1, -8,Z-10-hexadecatriene,9,12-octadecadienal, 24-methyl-5-cholestene-3-ol,(Z)-9,17-octadecadienal, stigmastan-3,5-dien, eicosane and so on. Among them, the relative content of (Z, Z)-9,12-octadecadienoic acid is the highest, accounting for 65.85% of the total area. It is concluded that N. tangutorum Bobr. seed oil is a rich source of linoleic acid.
Resumo:
The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246 g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability (ME/GE) of the rapeseed oil was estimated to 85% yielding an apparent metabolisable energy value of 34.30 MJ/kg.