915 resultados para Shanghai Expo
Resumo:
Laughter is a frequently occurring social signal and an important part of human non-verbal communication. However it is often overlooked as a serious topic of scientific study. While the lack of research in this area is mostly due to laughter’s non-serious nature, it is also a particularly difficult social signal to produce on demand in a convincing manner; thus making it a difficult topic for study in laboratory settings. In this paper we provide some techniques and guidance for inducing both hilarious laughter and conversational laughter. These techniques were devised with the goal of capturing mo- tion information related to laughter while the person laughing was either standing or seated. Comments on the value of each of the techniques and general guidance as to the importance of atmosphere, environment and social setting are provided.
Resumo:
Au nanoparticles (AuNPs) have been widely used not only as optical labels or ‘weight” labels for the detections of biorecognition events but also an amplifier of surface plasmon resonance biosensors. The intrinsic property of gold nuclei composing of a group of Au atoms to catalyze the reduction of metal ions on the NPs and thereby to enlarge the metallic nanoparticles is employed in different biosensing paths. In a solution containing Au+ ions (e.g. HAuCl4) and the Au clusters, hydrated electrons which are reduced from oxidation of reducers (H2O2, sodium citrate, ascorbic acid, or NaBH4) will be used to reduce the Au+ ion leading to the deposition of Au+ to the Au0 (Au clusters). The reaction will be catalyzed continuously by the Au0 until the Au+ ions and hydrated electrons are exhausted. As a result, the AuNPs will be grown and their optical properties are also changed. If the AuNP nanoclusters are used as probes, the color change will be dependent on amount of analytes, thus give a quantitative monitoring of the analytes.
In this study, we incorporate the use of magnetic beads with the nanocrystalline growth to quantify a target protein based on immunoreactions. Prostate specific antigen (PSA) is chosen as the target analyte because of its values in diagnosis of prostate cancer. A double-sandwiched immunoassay is performed by gold-tagged monoclonal PSA antibody-PSA antigen – magnetic bead-tagged polyclonal PSA antibody interactions. After the immunoreactions, the target analytes are preconcentrated and separated by the magnetic beads while the nanogrowth plays a role of colorimetric signal developer.
The result shows that this is a very sensitive, robust and excellent strategy to detect biological interactions. PSA antigen is detected at femtomolar level with very high specificity under the presence of undesired proteins of crude samples. Furthermore, the method also shows great potential to detect other biological interactions. More details will be described in our presentation.
Resumo:
In July 2010, the Shanghai Donghai Bridge wind farm, the first commercial offshore wind project was connected to the main grid in China. Three months later, four contracts were handed out to build a total of 1GW wind power capacity in the first round of an offshore concession project by the Chinese central government. At that time, there was a worldwide expectation that Chinese offshore wind power capacity would expand rapidly. However, China only achieved a total offshore wind power installed capacity of 389.2 MW by the end of 2012. This paper studies the recent development of offshore wind power in China by dividing the offshore wind power projects into three categories. This paper presents the difficulties for the Chinese government to achieve its 12th Five Year Plan for offshore wind power. Some policy recommendations to overcome the current difficulties are made in the conclusions.
Resumo:
2-D Discrete Cosine Transform (DCT) is widely used as the core of digital image and video compression. In this paper, we present a novel DCT architecture that allows aggressive voltage scaling by exploiting the fact that not all intermediate computations are equally important in a DCT system to obtain "good" image quality with Peak Signal to Noise Ratio(PSNR) > 30 dB. This observation has led us to propose a DCT architecture where the signal paths that are less contributive to PSNR improvement are designed to be longer than the paths that are more contributive to PSNR improvement. It should also be noted that robustness with respect to parameter variations and low power operation typically impose contradictory requirements in terms of architecture design. However, the proposed architecture lends itself to aggressive voltage scaling for low-power dissipation even under process parameter variations. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors would only appear from the long paths that are less contributive towards PSNR improvement, providing large improvement in power dissipation with small PSNR degradation. Results show that even under large process variation and supply voltage scaling (0.8V), there is a gradual degradation of image quality with considerable power savings (62.8%) for the proposed architecture when compared to existing implementations in 70 nm process technology.
Resumo:
Low-power processors and accelerators that were originally designed for the embedded systems market are emerging as building blocks for servers. Power capping has been actively explored as a technique to reduce the energy footprint of high-performance processors. The opportunities and limitations of power capping on the new low-power processor and accelerator ecosystem are less understood. This paper presents an efficient power capping and management infrastructure for heterogeneous SoCs based on hybrid ARM/FPGA designs. The infrastructure coordinates dynamic voltage and frequency scaling with task allocation on a customised Linux system for the Xilinx Zynq SoC. We present a compiler-assisted power model to guide voltage and frequency scaling, in conjunction with workload allocation between the ARM cores and the FPGA, under given power caps. The model achieves less than 5% estimation bias to mean power consumption. In an FFT case study, the proposed power capping schemes achieve on average 97.5% of the performance of the optimal execution and match the optimal execution in 87.5% of the cases, while always meeting power constraints.
Resumo:
In modern semiconductor manufacturing facilities maintenance strategies are increasingly shifting from traditional preventive maintenance (PM) based approaches to more efficient and sustainable predictive maintenance (PdM) approaches. This paper describes the development of such an online PdM module for the endpoint detection system of an ion beam etch tool in semiconductor manufacturing. The developed system uses optical emission spectroscopy (OES) data from the endpoint detection system to estimate the RUL of lenses, a key detector component that degrades over time. Simulation studies for historical data for the use case demonstrate the effectiveness of the proposed PdM solution and the potential for improved sustainability that it affords.
Resumo:
Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.
Resumo:
28.Rawson, A., Koidis, A., Tuohy, M., Brunton, N. (2010). Stability of polyacetylenes in parsnips disks as affected by sous-vide processing. Program and exhibit directory, p.104, Institute of Food Technology Annual Meeting and Food Expo, Chicago, IL, USA, 17-20/07/2010
Resumo:
An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure
turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow
structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.
Resumo:
Male suicide rates are high in Western countries including the US and Canada. Underpinned by men’s resistance to health help-seeking and challenges diagnosing mental illness including male depression, suicide ends the lives of many men amid inflicting pain and grief on the family and friends who are left behind. Fuelled by the discordant relationship between men’s low rates of depression and high rates of suicide we embarked on a unique and novel photovoice study title Man-Up Against Suicide. Specifically, men who have contemplated suicide in the past, and individuals (men and women) who have lost a male partner, family member or friend to suicide were invited to take photographs representing their experiences with men’s suicide with the ultimate goal of messaging ‘at risk’ men that there are alternatives to taking one’s life. Participants subsequently completed semi-structured individual interviews narrating the photographs and providing captions to accompany their selected images. In this presentation we share the preliminary study findings along with some participant photographs and narratives as a means to discussing; 1) men’s experiences of suicidal behaviours and their management strategies; and, 2) how men’s and women’s experiences of losing a male to suicide can de-stigmatize men’s mental illness and raise public awareness about male suicide.
Resumo:
Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with regards to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is preferred for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine design. A range of mixed flow turbine rotors was designed with varying cone angle and inlet blade angle and each was assessed at a number of operating points. These rotors were based on an existing radial flow turbine, and both the hub and shroud contours and exducer geometry were maintained. The inertia of each rotor was also considered. The results indicated that there was a trade-off between efficiency and inertia for the rotors and certain designs may be beneficial for the transient performance of downsized, turbocharged engines.
Resumo:
One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.