987 resultados para Quantitative Interpretation
Resumo:
Universities around the world are facing global competition and challenges to finance their main functions - research and education. This study focused on the role of graduates, alumni, in the success of a university. The purpose of this study was to examine the role of brand identification in alumni willingness to support their alma mater. The research concentrated on finding out what is the relationship between brand identification and it’s antecedents (prestige, satisfaction, interpretation of brand) to alumni willingness to promote university, participate in university activities and support financially by donating money to university’s research. The research method was quantitative and the data was collected via online survey from 569 alumni of a Finnish university. The findings suggest that there is a strong relationship between brand identification and alumni support. The stronger brand identification is, the more willing alumni were to promote university, participate in university activities and support financially. Based on the research, it is beneficial for universities to invest in brand development in order to get alumni to act as ambassadors of the university after their graduation.
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
The aims of this study were to determine whether standard base excess (SBE) is a useful diagnostic tool for metabolic acidosis, whether metabolic acidosis is clinically relevant in daily evaluation of critically ill patients, and to identify the most robust acid-base determinants of SBE. Thirty-one critically ill patients were enrolled. Arterial blood samples were drawn at admission and 24 h later. SBE, as calculated by Van Slyke's (SBE VS) or Wooten's (SBE W) equations, accurately diagnosed metabolic acidosis (AUC = 0.867, 95%CI = 0.690-1.043 and AUC = 0.817, 95%CI = 0.634-0.999, respectively). SBE VS was weakly correlated with total SOFA (r = -0.454, P < 0.001) and was similar to SBE W (r = -0.482, P < 0.001). All acid-base variables were categorized as SBE VS <-2 mEq/L or SBE VS <-5 mEq/L. SBE VS <-2 mEq/L was better able to identify strong ion gap acidosis than SBE VS <-5 mEq/L; there were no significant differences regarding other variables. To demonstrate unmeasured anions, anion gap (AG) corrected for albumin (AG A) was superior to AG corrected for albumin and phosphate (AG A+P) when strong ion gap was used as the standard method. Mathematical modeling showed that albumin level, apparent strong ion difference, AG A, and lactate concentration explained SBE VS variations with an R² = 0.954. SBE VS with a cut-off value of <-2 mEq/L was the best tool to diagnose clinically relevant metabolic acidosis. To analyze the components of SBE VS shifts at the bedside, AG A, apparent strong ion difference, albumin level, and lactate concentration are easily measurable variables that best represent the partitioning of acid-base derangements.
Resumo:
Amplification of the MYCN gene in neuroblastomas is a potent biological marker of highly aggressive tumors, which are invariably fatal unless sound clinical management is applied. To determine the usefulness of semi-quantitative differential PCR (SQ-PCR) for accurate quantification of MYCN gene copy number, we evaluated the analytical performance of this method by comparing the results obtained with it for 101 tumor samples of neuroblastoma to that obtained by absolute and relative real-time PCR. Similar results were obtained for 100 (99%) samples, no significant difference was detected between the median log10 MYCN copy number (1.53 by SQ-PCR versus 1.55 by absolute real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). In the comparison of SQ-PCR and relative real-time PCR, SQ-PCR versus relative real-time PCR concordant results were found in 100 (99%) samples, no significant difference was found in median log10 MYCN copy number (1.53 by SQ-PCR versus 1.27 by relative real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). These findings indicate that the performance of SQ-PCR was comparable to that of real-time PCR for the amplification and quantification of MYCN copy number. Thus, SQ-PCR can be reliably used as an alternative assay in laboratories without facilities for real-time PCR.
Resumo:
The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.
Resumo:
Intestinal tuberculosis (ITB) and Crohn's disease (CD) are granulomatous disorders with similar clinical manifestations and pathological features that are often difficult to differentiate. This study evaluated the value of fluorescent quantitative polymerase chain reaction (FQ-PCR) for Mycobacterium tuberculosis (MTB) in fecal samples and biopsy specimens to differentiate ITB from CD. From June 2010 to March 2013, 86 consecutive patients (38 females and 48 males, median age 31.3 years) with provisional diagnoses of ITB and CD were recruited for the study. The patients' clinical, endoscopic, and histological features were monitored until the final definite diagnoses were made. DNA was extracted from 250 mg fecal samples and biopsy tissues from each patient. The extracted DNA was amplified using FQ-PCR for the specific MTB sequence. A total of 29 ITB cases and 36 CD cases were included in the analysis. Perianal disease and longitudinal ulcers were significantly more common in the CD patients (P<0.05), whereas night sweats, ascites, and circumferential ulcers were significantly more common in the ITB patients (P<0.05). Fecal FQ-PCR for MTB was positive in 24 (82.8%) ITB patients and 3 (8.3%) CD patients. Tissue PCR was positive for MTB in 16 (55.2%) ITB patients and 2 (5.6%) CD patients. Compared with tissue FQ-PCR, fecal FQ-PCR was more sensitive (X2=5.16, P=0.02). We conclude that FQ-PCR for MTB on fecal and tissue samples is a valuable assay for differentiating ITB from CD, and fecal FQ-PCR has greater sensitivity for ITB than tissue FQ-PCR.
Resumo:
Tutkimuksessa tarkastellaan lauseen aspektin ilmaisemista suomen kielessä. Aspektia käsitellään merkityskategoriana, joka osoittaa lauseen kuvaaman asiaintilan ajallisen keston, ja perustavanlaatuisena aspektuaalisena erontekona pidetään rajattuuden ja rajaamattomuuden vastakohtaisuutta. Tutkimuksessa selvitetään, millä perusteella lauseet saavat joko rajatun tai rajaamattoman aspektitulkinnan ja miten konteksti vaikuttaa tähän tulkintaan. Lauseen kontekstina käsitellään kielellistä kontekstia eli tekstiä. Työ on aineistopohjainen tutkimus kirjoitetusta nykysuomesta, ja tarkastelun kohteena on sanomalehtiteksteistä koottu lauseaineisto. Lauseiden pääverbit ovat olla, tehdä ja tulla. Aineistosta on mahdollista esittää sekä kvalitatiivisia että kvantitatiivisia huomioita. Tutkimuksen teoreettisen ja metodologisen taustan muodostavat eräiden kognitiivisen kielitieteen suuntausten kuvauskäsitteet ja -metodit sekä fennistinen aspektin kuvaamisen perinne. Tutkimuksessa tarkastellaan kahta fennistiikassa esitettyä tapaa määritellä lauseen aspektimerkitys ja osoitetaan, että ne ovat toisiaan täydentäviä. Molemmat lähestymistavat huomioon ottamalla on siis mahdollista kuvata lauseen aspektimerkityksen määräytyminen täsmällisemmin kuin vain yhteen kuvaustapaan keskittymällä. Lisäksi osoitetaan, että keskeisinä aspektin ilmaisemisen keinoina pidetyt keston ja toistuvuuden adverbiaalit jäävät aineistossa marginaalisiksi. Ajankohdan adverbiaaleja puolestaan käsitellään aiemmasta tutkimuksesta poiketen rajattuina tarkastelunäkökulmina kuvattuun asiaintilaan, ja ne toimivat tässä tehtävässä liittyessään aspektiltaan rajaamattomiin lauseisiin. Lisäksi tutkimus osoittaa, että aspektin ilmaisemisen kerroksellisuutta voidaan aspektin ilmaisemiseen osallistuvien lauseenjäsenten kerrostumisen ohella tarkastella lausekokonaisuuden eri semanttisten tasojen kerrostumisena. Lausetta laajemman kontekstin vaikutusta aspektitulkintaan ei ole aiemmin tutkittu suomen kielessä. Tutkimus osoittaa, että aspektiltaan monitulkintaisten lauseiden konteksti voi selventää tulkinnan tai mahdollistaa samanaikaisesti vaihtoehtoiset tulkinnat. Lisäksi erilaisten lauseenulkoisten rajan ilmausten avulla on mahdollista osoittaa lauseen aspektin rajattuutta siinä tapauksessa, että lause muutoin ymmärrettäisiin aspektiltaan rajaamattomaksi.
Resumo:
Samples of ketchup available on the Brazilian market, one traditional (sweetened with sucrose) and three light versions (sweetened with aspartame, acesulfame-K and a blend of cyclamate, saccharin and stevia) were evaluated for their physicochemical characteristics and sensory profile (Quantitative Descriptive Analysis). Four main groups of attributes were generated: appearance, oral texture, aroma and flavor. The samples presented significant differences in all attributes, except for syneresis and overripe tomato flavor. The highest means for sweetener and bitter tastes and aftertastes were observed for the samples sweetened with acesulfame-K and the blend of sweeteners. Although different characteristics were observed among the products evaluated and, despite the differences in the formulations, the light ketchup sweetened with aspartame was the one that presented properties most similar to those of the traditional ketchup.
Resumo:
Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.
Resumo:
Building a computational model for complex biological systems is an iterative process. It starts from an abstraction of the process and then incorporates more details regarding the specific biochemical reactions which results in the change of the model fit. Meanwhile, the model’s numerical properties such as its numerical fit and validation should be preserved. However, refitting the model after each refinement iteration is computationally expensive resource-wise. There is an alternative approach which ensures the model fit preservation without the need to refit the model after each refinement iteration. And this approach is known as quantitative model refinement. The aim of this thesis is to develop and implement a tool called ModelRef which does the quantitative model refinement automatically. It is both implemented as a stand-alone Java application and as one of Anduril framework components. ModelRef performs data refinement of a model and generates the results in two different well known formats (SBML and CPS formats). The development of this tool successfully reduces the time and resource needed and the errors generated as well by traditional reiteration of the whole model to perform the fitting procedure.
Resumo:
Pouteria pachycarpa is a tree species, found in the Brazilian Amazon and Bolivia whose wood has been exploited from the native forest. The present research describes the quantitative characteristics of fruits and seeds and quantifies the seed germination of this species. The fruit and seed color were characterized and measurements taken of the mass, length, diameter and number of seeds per fruit, the seed length, width and thickness, the germination percentage, abnormal seedlings and dead seeds. Sowing was carried out on a substrate containing sand and sawdust (1:1), in four replications of 50 seeds. The predominant fruit and seed colors were vivid yellowish orange (9YR) and dark grayish brown (6YR), respectively. Fruit mass, length and diameter ranged from 37.7 to 192.4g, 41.3 to 87.3mm and 39.7 to 71.7mm, respectively. Fruits had from two to seven seeds, and 42.6% were damaged by insects. Seed length, width and thickness ranged from 22.4 to 35.2mm, 9.7 to 15.5mm and 5.5 to 10.8mm, respectively. Seedling emergence began 18 days after sowing. Maximum germination, 86%, was recorded 33 days after sowing. The germination curve was sigmoid, similar to the majority of species. The percentage of abnormal seedlings and dead seeds were 3% and 11%, respectively. Both fruits and seeds show great variation in quantitative characteristics and the germination is slow and non-uniform.
Resumo:
Atherosclerosis is a chronic and progressive disease of the vasculature. Increasing coronary atherosclerosis can lead to obstructive coronary artery disease (CAD) or myocardial infarction. Computed tomography angiography (CTA) allows noninvasive assessment of coronary anatomy and quantitation of atherosclerotic burden. Myocardial blood flow (MBF) can be accurately measured in absolute terms (mL/g/min) by positron emission tomography (PET) with [15O] H O as a radiotracer. We studied the coronary microvascular dysfunction as a risk factor for future coronary calcification in healthy young men by measuring the coronary flow reserve (CFR) which is the ratio between resting and hyperemic MBF. Impaired vasodilator function was not linked with accelerated atherosclerosis 11 years later. Currently, there is a global interest in quantitative PET perfusion imaging. We established optimal thresholds of [15O] H O PET perfusion for diagnosis of CAD (hyperemic MBF of 2.3 mL/g/min and CFR of 2.5) in the first multicenter study of this type (Turku, Amsterdam and Uppsala). In myocardial bridging a segment of the coronary artery travels inside the myocardium and can be seen as intramural course (CTA) or systolic compression (invasive coronary angiography). Myocardial bridging is frequently linked with proximal atherosclerotic plaques. We used quantitative [15O] H O PET perfusion to evaluate the hemodynamic effects of myocardial bridging. Myocardial bridging was not associated with decreased absolute MBF or increased atherosclerotic burden. Speckle tracking allows quantitative echocardiographic imaging of myocardial deformation. Speckle tracking during dobutamine stress echocardiography was feasible and comparable to subjective wall motion analysis in the diagnosis of CAD. In addition, it correctly risk stratified patients with multivessel disease and extensive ischemia.