839 resultados para Poly(ethyleneterephthalate) (PET)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of post-consumer materials is directly related to reducing the cost of production and extraction of natural resources. Non-recyclable materials are randomly disposed in the environment. Brazil is one of the largest consumers of PET (polyethylene terephthalate) bottles. The purpose of this paper is to describe the opportunities and challenges of the logistics model for post-consumer PET bottle recycling in Brazil, while providing knowledge of its practices along the recycling chain. The results describe the need to educate those directly and indirectly involved in the process: to reduce consumption in order to reduce the amount of waste generated: to structure the post-consumer reverse chain and engage industrial sectors and government, through public policies, to support cleaner technologies along the PET bottle production chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33 x 10(-7) m(3)/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47degrees to 13degrees and surface energies from 6.4 x 10(-6) to 8.3 x 10(-6) J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Plasma treatments are frequently employed to modify surface properties of materials such as adhesivity, hydrophobicity, oleophobicity etc. Present work deals with surface modification of common commercial polymers such as polyethylene terephthalate (PET) and polyurethane (PU) by an air dielectric barrier discharge (DBD) at atmospheric pressure. The DBD treatment was performed in a plain reactor in wire-duct geometry (non-uniform field reactor), which was driven by a 60 Hz power supply. Material characterization was carried out by water contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The plasma-induced modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. The AFM analysis reveals that the plasma treatment roughens the material surface. Due to these structural and morphological changes the surface of DBD-treated polymers becomes more hydrophilic resulting in enhanced adhesion properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This dissertation aimed to analyze the perception of students about (EPW Health) Education Program at Work for Health Training in the area of Health. It discusses the proposed theme from the perception of students graduating from the EPW- Health courses participants (dentistry, medicine, physiotherapy, nursing, nutrition, physical education) who have developed their school activities in family health units in the city of João Pessoa between 2009/2011.The program aims policies curricular changes as a potential route of contributions to training in healthcare. Attention is drawn to the new possibilities of working health training contextualized, ethically grounded, socially endorsed. It is pointed out in this process the need to adapt to the demands of professional profiles of SUS (Sistema Único de Saúde). This is an exploratory, descriptive study within a qualitative approach, conducted in the city of João Pessoa in the context of health care courses at the Federal University of Paraiba. The empirical material of this study was treated by the use of technical analysis "Categorical Content Theme" by Bardin. The results indicate prospects for promoting new practices and curricular changes, which highlights the EPW- Health, which has been presenting important experiences in teaching -community -service- with the inclusion of students in the municipal health network. We conclude that the path from collection to data analysis, corroborated with the literature to reaffirm the importance and urgency of change in educational processes with a view to greater proximity to the health needs and the SUS. The EPW- Health project is incipient and requires further investigation in terms of effective interdisciplinary and multidisciplinary character of its proposal
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Films made from a blend of poly(epsilon-caprolactone) and poly(vinyl chloride) (PCL/PVC) retained high crystallinity in a segregated PCL phase. Structural and morphological changes produced when the films were exposed to high potency ultraviolet (UV) irradiation for 10 h were measured by UV-Vis spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). They were different to those observed with homopolymer PCL and PVC films treated under the same conditions. The FTIR spectra of the PCL/PVC blend suggest that blending decreased the susceptibility of the PCL to crystallize when irradiated. Similarly, although scanning electron micrographs of PCL showed evidence of growth of crystalline domains, particularly after UV irradiation, the images of PCL/PVC were fairly featureless. It is apparent that the degradation behavior is strongly influenced by the interaction of the two polymers in the amorphous phase.
Resumo:
The photodegradation of a 1:1 w/w blend of polycaprolactone and poly(vinyl chloride) has been studied by following carbon dioxide emission during UV exposure. Similar measurements were performed for polycaprolactone and poly(vinyl chloride) homopolymers which were prepared and irradiated in the same way. It was found that the blend gave lower CO2 emission than either of the two homopolymers, indicating that the interaction of the two components in the blend provided a beneficial reduction of photodegradation. It is therefore deduced that the detailed morphological characteristics of the blend have a controlling influence over the photo-oxidation. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The partitioning of Green Fluorescent Protein (GFP) in poly(ethylene glycol)/Na-poly(acrylate) aqueous two-phase systems (PEG/NaPA-ATPS) has been investigated. The aqueous two-phase systems are formed by mixing the polymers with a salt and a protein solution. The protein partitioning in the two-phase system was investigated at 25 degrees C. The concentration of the GFP was measured by fluorimetry. It was found that the partitioning of GFP depends on the salt type, pH and concentration of PEG. The data indicates that GFP partitions more strongly to the PEG phase in presence of Na2SO4 relative to NaCl. Furthermore, the GFP partitions more to the PEG phase at higher pH. The partition to the PEG phase is strongly favoured in systems with larger tie-line lengths (i.e. systems with higher polymer concentrations). The molecular weight of PEG is important since the partition coefficient (K) of GFP gradually decreases with increasing PEG size, from K ca. 300-400 for PEG 400 to K equal to 1.19 for PEG 8000. A separation process was developed where GFP was separated from a homogenate in two extraction steps: the GFP is first partitioned to the PEG phase in a PEG 3000/NaPA 8000 system containing 3 wt% Na2SO4, where the K value of GFP was 8. The GFP is then re-extracted to a salt phase formed by mixing the previous top-phase with a Na2SO4 solution. The K-value of GFP in this back-extraction was 0.22. The total recovery based on the start material was 74%. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.