950 resultados para O2-
Resumo:
Zinc oxide varistors are very complex systems, and the dominant mechanism of voltage barrier formation in these systems has not been well established. Yet the MNDO quantum mechanical theoretical calculation was used in this work to determine the most probable defect type at the surface of a ZnO cluster. The proposed model represents well the semiconducting nature as well as the defects at the ZnO bulk and surface. The model also shows that the main adsorption species that provide stability at the ZnO surface are O-, O2 -, and O2.
Resumo:
Background and Objectives - Inhalational anesthetics have a mild analgesic effect. The reduction of alveolar concentration (MAC) of potent volatile anesthesics by increasing plasma concentrations of opioids is desired in inhalational anesthesia. The purpose of this study was to determine the role of sufentanil in reducing sevoflurane and isoflurane MAC. Methods - Thirty eight adult patients of both genders, physical status ASA I or II, submitted to major abdominal procedures were randomly allocated into two groups. Group I (n = 24) received inahalational anesthesia with sevoflurane and Group II (n = 14) received inhalational anesthesia with isoflurane, both diluted in a mixture of N2O (1 liter) and O2 (0.5 liter). A semi-closed system with CO2 absorber and partial reinhalation was used. Ventilation was mechanically controlled. Sufentanil infusion was administered aiming at obtaining 0.5 ng.ml-1 of plasma concentration. Sufentanil plasma concentration was previously calculated by a computer software. End-tidal concentrations were obtained through a gas analyzer and measured at 15 minutes (M1), 30 minutes (M2), 60 minutes (M3), 90 minutes (M4) and 120 minutes (M5). Systolic and diastolic blood pressure (SBP and DBP) and heart rate (RR) were measured during the same periods with the addition of M0 (pre-anesthetic period). Hourly consumption of the inhalational anesthetic agent (IAC), extubation time (ET = time between admission to the recovery room and extubation) and stay in the post anesthesia recovery room (PA-RR) were also measured. Results - Type and duration of surgeries were similar for both groups. There were no statistically significant differences in MAC, SBP, DBP, RR, IAC, TE and PA-RR between groups. Systolic blood pressure in group I (sevoflurane) showed differences among periods F = 3.82 p < O.05; (M2 = M3)(M4 = M5) and M1 had a intermediate value. MAC in group I showed differences among periods F = 9.0 p < 0.05; M1 < M3. MAC in group II also showed differences among periods F = 13.03 p < O.05; M1 < (M2,M3,M4,M5). Conclusions - Both groups had similar behavior when associated to sufentanil in major abdominal surgeries. Group II showed a higher cardiac and circulatory stability.
Resumo:
Nickel compounds have high potential risk for the health of populations and for this reason their toxic effects should be urgently established. To determine the effect of nickel monosulfide in the muscle at the injection site on pancreatic, hepatic, and osteogenic lesions and the potential therapeutic effect of Cu-Zn superoxide dismutase (SOD), male Wistar rats received single intramuscular injections of nickel monosulfide (NiS - 7 mg Ni2+/Kg). A group of these experimental rats were injected intraperitoneally, with a single weekly dose of SOD covalently linked to polyethylene glycol (SOD-PEG). Rats were sacrificed at 2, 4, 6, and 8 months after Ni2+ injection. Nickel monosulfide produced tumors at the injection site. The increased phospholipid, alanine transaminase (ALT), alkaline phosphatase (ALP), and amylase levels in serum, in absence of SOD-PEG, reflected the toxic effects on pancreatic, hepatic, and osteogenic tissues of rats. SOD activity was increased in serum of rats receiving SOD-PEG throughout the experiment, and no significant difference was observed in biochemical parameters of control and experimental rats in presence of SOD- PEG. Superoxide radical generated by Ni2+ is of primary importance in the development of tumors at the injection site. Superoxide anion (O2 -) is also an important toxic intermediate with respect to hepatic, pancreatic, and osteogenic injury, since SOD-PEG has a potential therapeutic effect.
Resumo:
Thin films of undoped and Sb-doped (2 atg%) SnO2 have been prepared by sol-gel dip-coating technique on borosilicate glasses. Variation of photoconductivity excitation with wavelength and optical absorption indicate indirect bandgap transition with energy of ≅ 3.5 eV. Conductance as function of temperature indicates two levels of capture with 39 and 81 meV as activation energies, which may be related to an Sb donor and oxygen vacancy respectively. Electron trapping by these levels are practically destroyed by UV photoexcitation (305 nm) and heating in vacuum to 200°C. Gas analysis using a mass spectrometer indicates an oxygen related level, which may not be desorbed in the simpler O2 form.
Resumo:
We investigated the cost of prey ingestion in the South American rattlesnake, Crotalus durissus, to see if the capacity to generate energy aerobically could be a constraint on the size of the prey that can be ingested. To accomplish this goal, we measured time and aerobic metabolism (inferred from oxygen consumption) of juvenile C. durissus ingesting prey ranging from 10 to 50% of their own body mass. Time needed for prey ingestion increased with prey size, with prey representing 10 and 20% of snake size being ingested with the same effort. Whole animal rates of oxygen consumption increased linearly with prey size, but at a slower pace for snakes ingesting prey larger than 30% of their body mass. Aerobic factorial power input necessary for prey ingestion increased with prey size, and for snakes ingesting prey representing 50% of their body mass it equaled the aerobic factorial scope for exercise. For the maximum prey size tested, the aerobic derived energy necessary for prey ingestion represented 0.02% of the total energy content of the prey. Within the prey size range we studied, the cost of ingestion did not constitute any constraint on the size of the prey that can be ingested. These constraints are set by morphological (gape size), ecological (predation risk), and, probably, by physiological parameters, as suggested by the tendency of V̇O2 during ingestion to increase at a slower pace at relative larger prey sizes.
Resumo:
Objective - To investigate the use of the laryngeal mask airway (LMA) in dogs. Study Design - Prospective experimental study. Animals - Eight healthy adult mixed breed dogs weighing from 15 to 20 kg. Methods - The dogs were anesthetized with intravenous pentobarbital. An LMA was introduced after the induction of anesthesia and 1 L/min O2 plus 1 L/min air was delivered using a circle anesthetic system. Respiratory rate, tidal volume, arterial O2 saturation (pulse oximetry), end tidal CO2, inspired fraction of O2, pulse rate, and mean arterial blood pressure were measured after the insertion of the LMA and 30, 60, 90, and 120 minutes afterwards. Results - There were no changes in respiratory rate, tidal volume, arterial O2 saturation, and pulse rate during anesthesia. End tidal CO2 decreased significantly by the end of anesthesia and ventilation appeared satisfactory. Conclusions - An LMA appeared to be an alternative option to maintain the patency of the airway in dogs. Clinical Relevance - This device may allow safe maintenance of an airway in dogs when intubation is difficult or when it interferes with the procedure (eg, cervical myelography). ©Copyright 1999 by The American College of Veterinary Surgeons.
Resumo:
The incidence of cardiovascular disease has increased in the general population, and cardiac damage is indicated as one important cause of mortality. In addition, pollution and metal exposure have increased in recent years. For this reason, toxic effects of metals, such as nickel, and their relation to cardiac damage should be urgently established. Although free radical-mediated cellular damage and reactive oxygen species have been theorized as contributing to the nickel mechanism of toxicity, recent investigations have established that free radicals may be important contributors to cardiac dysfunction. However, there is little information on the effect of nickel exposure on markers of oxidative stress in cardiac tissue. Nickel exposure (Ni2+ 100 mg L-1 from NiSO4) significantly increased lipoperoxide and total lipid concentrations in cardiac tissue. We also observed increased serum levels of cholesterol (59%), lactate dehydrogenase (LDH-64%), and alanine transaminase (ALT-30%) in study animals. The biochemical parameters recovered to the control values with tocopherol intake (0.2 mg 200 g-1). Vitamin E alone significantly decreased the lipoperoxide concentration and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the heart. Since no alterations were observed in catalase and GSH-Px activities by nickel exposure while SOD activities were decreased, we conclude that superoxide radical (O2 -) generated by nickel exposure is of primary importance in the pathogenesis of cardiac damage. Tocopherol, by its antioxidant activity, decreased the toxic effects of nickel exposure on heart of rats.
Resumo:
Background and Objectives - It is essential to reduce health care costs without impairing the quality of care. Propofol is associated to faster recovery and it is known that post-anesthesia care unit (PACU) costs are high. The aim of this study was to evaluate the advantages of two anesthesia regimens - propofol continuous infusion or isoflurane - taking into account the cost of both techniques on PACU stay. Methods - Forty seven patients, physical status ASA I, II and III, undergoing laparoscopic cholecystectomy were divided into 2 groups according to the anesthetic agent: G1, conventional propofol continuous infusion (100-150 μg.kg-1.min-1) and G2, isoflurane. All patients were induced with sufentanil (1 μg.kg-1) and propofol (2 mg.kg-1) and were kept in a re-inhalation circuit (2 L.min-1 of fresh gas flow) with 50% N2O in O2, sufentanil (0.01 μg.kg-1.min-1) and atracurium (0.5 mg.kg-1), or pancuronium (0.1 mg.kg-1) for asthma patients. All patients received atropine and neostigmine at the end of the surgery. Prophylactic ondansetron, dipyrone and tenoxican were administered and, when necessary, tramadol and N-butylscopolamine. Costs of anesthetic drugs (COST), total PACU stay (t-PACU), and PACU stay after extubation (t-EXT) were computed for both groups. Results - Costs were significantly lower in the isoflurane group but t-PACU was 26 minutes longer and t-EXT G1
Resumo:
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis-irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photoinhibition (β = -0.33-0.01 mg O2 g-1 DW h-1 (μmol photons m-2 s-1)-1) was found for all species/populations analyzed, whereas light compensation points (lc) were very low (≤ 2 μmol photons m- photons s-1) for most algae tested. Saturation points were low for all algae tested (lk = 6-54 μmol photons m-2 S-1; lS = 20-170 μmol photons m-2 s-1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20-25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00-11.00 hours.) and a second (lower) in the afternoon (14.00-18.00 hours). Comparative data between the 'Chantransia' stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2-times) in the latter, much lower than previously reported. The physiological role of the 'Chantransia' stage needs to be better analyzed.
Resumo:
Pb1-xLaxTiO3 thin films, (X=0.0; 13 and 0.27mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si(111), Si(100) and glass substrates by spin coating, and annealed in the 200-300°C range in an O2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Contracted GTF basis sets designed with aid of the Generator Coordinate Hartree-Fock (GCHF) method for H(2S), O2-(1S), and Cr3+(4F) atomic species are applied to perform theoretical interpretation of the Raman spectrum of hexaaquachromium(III) ion. The 16s, 16s 10p, and 24s17p13d GTF basis sets were contracted to [4s] for H atom, [6s4p], and [9s6p3d] for O2- and Cr3+, respectively, by Dunning's scheme. For Cr3+, the [9s6p3d] basis set was enriched with f polarization function and used in combination com [4s] and [6s4p] in the study of our interest. The results obtained in this report show that the contracted GTF basis sets used are a useful alternative for the theoretical interpretation of Raman spectrum of hexaaquachromium(III) ion and that GCHF method is an effective alternative to selection of GTF basis sets for theoretical study of vibrational properties of poliatomic species. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
During the 1999/00 and 2000/01 seasons, sliced 'Tommy Atkins' mangoes were packaged with three different types of polymeric films; polypropylene (PP) cups, low-density polyethylene (LPDE) bags or polyethylene terephthalate (PET) clamshell trays, and stored at 3°C for 2 weeks. The mango chunks were evaluated for flavor, appearance, colour, total soluble solids (TSS), total titratable acidity (TTA), ascorbic acid (AA) contents, O2 and CO 2 concentration in the packages, as well as respiration. Shelf life based on visual appearance was 14 days, with the products showing good appearance and agreeable aroma. The TTA content in chunks packaged in PP cups or PET trays were reduced during the storage, and with the color changing from light yellow to dark yellow. The chunks respiration in PP cups or LPDE bags were 64.6 and 87.9 mL CO2.kg-1.h-1, and in PP cups or PET trays were 45.86 and 43.92 mL CO2.kg-1.h -1, respectively for 1999/00 and 2000/01 seasons. The percentages of O2 and CO2 in the packages were stabilized after 2-4 hours, and the atmosphere had 11-17% and 1-10% of them. The microbiological content was lower than the allowed. No differences were observed between the seasons, and the best packages were the cups.
Resumo:
A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis.
Resumo:
The perceived exertion has been a target of several investigations, many times with association with objective physiological indicators in exercise. Recently, the identification of the perceived exertion threshold (PET) was proposed in the water running, which presented no difference in relation to the critical velocity. Theoretically, both parameters would be indicators of the maximum steady state of variables such as V̇O2 and blood lactate. The objective of this work was to verify the coincidence between PET, critical power (PCrit) and an indicator of maximum V̇O2 steady state (PCrit') in cycle ergometer. Eight male participants were submitted to progressive effort test in order to determine V̇O2peak (46.7 ± 8.5 ml/kg/min) and to four rectangular tests until exhaustion for the estimation of the critical power model parameters, PET and PCrit'. The hyperbolic relation between mechanical power and time spent for the V̇O2peak to be reached in each test was used for the PCrit' estimation, considered as the asymptote in the power axis, and the portion of the anaerobic work capacity (CTAnaer) depleted up to the establishment of the V̇O2peak (CTAnaer'). In order to identify PET, the straight lines angular coefficients of the perceived exertion in time (ordinate) and the powers used (abscissa) were adjusted to a linear function that provided a point in the power axis in which the perceived exertion would be kept indefinitely stable. The parameters PCrit and CTAnaer were estimated by means of the power-time non-linear equation. In order to compare the estimations of PET, PCrit and PCrit', the analysis of variance ANOVA for repeated measurements was employed, and the associations were established through the Pearson correlation. CTAnaer and CTAnaer' were compared through the t test. PET (180 W ± 61 W), PCrit (174 W ± 43 W) and PCrit' (176 W ± 48 W) were not significantly different and the correlations were of 0.92-0.98. CTAnaer' (14,080 ± 5,219 J) was lower than CTAnaer (22,093 ± 9,042 J). One concludes that the PET predicts the intensity of PCrit and PCrit' with accuracy.
Resumo:
The respiratory and storage behavior of fresh cut 'Tommy Atkins' mango, naturally ripened (NR) or with use of ethylene (RE), were studied. Fruits were selected, washed and disinfected (200 mgCl.L-1) and stored for 12 hours at 10°C. After this period, they were processed under hygienic conditions at 10°C, packaged in polyethylene terephthalate (PET) trays or in styrofoam trays wrapped with stretchable polyvinyl chloride (PVC) film and stored for up to 15 days at 3°C. The products were evaluated regarding the evolution of internal atmosphere in the packing (O2 and CO 2), development of weight, appearance, shelf life and consumer acceptability. The respiratory rate was measured before and after processing every two hours. The yield of 'Tommy Atkins' mango to produce fresh cut product was 48.09±0.95%. Increase of the respiration rate of both mango samples was verified one hour after the preparation (NR = 17.75 mL CO 2.kg-1.h-1; RE = 28.29 mL CO 2.kg-1.h-1), followed by stabilization at 3.76 and 8.07 mL CO2/kg.h, respectively. The percentage of O2 in packages was stable in all treatments, 15-20% in PVC trays, 18-20% in PET tray. The percentage of CO2 was steady around 1.5-2.5%. The products lost fresh mass during the storage, from 0.06% to 0.30% for PET trays and from 0.15% to 1.61% for trays covered with PVC. The appearance was considered appropriate for commercialization until the 13th day, whereas product from mangoes ripened with application of ethylene was for 11 days, presenting browning in the external surface. The naturally ripened mango presented the best flavor and consumer preference in relation to the mango ripened with application of ethylene for 11 days of storage. The control of hygienic conditions during the production and storage was good and with safety for until 10 days.