991 resultados para Motor nerve conduction velocity
Resumo:
Els models literaris analitzats se centren quasi exclusivament en les obres de Chrétien de Troyes i en els lais de Maria de França. S'ha pretés en tot moment fer una lectura de la novel·la en clau femenina per tal de demostrar que la figura central de l'heroi actua i evoluciona generalment gràcies a o a causa de la voluntat, les decisions o les accions de les dones que troba en la seua aventura. No hi pot haver cavalleria sense amor; tot cavaller ha de lluitar per la seua dama tant al camp de batalla com a la cort.
Resumo:
Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.
Resumo:
A partir de diferents enquestes de satisfacció institucional i de l'anàlisi de l'arxiu 'log' del servidor de la biblioteca respecte a l'ús i al comportament dels usuaris, es va detectar que cada cop era més complex accedir als continguts i serveis de manera proporcional al creixement d'aquests darrers i de l'augment del nombre d'usuaris. El creixement dels recursos i de les diferents aplicacions desenvolupats a la Biblioteca Virtual de la UOC (BUOC) va fer necessari la selecció i la implementació d'un motor de cerca que facilités de manera global l'accés als recursos d'informació i als serveis oferts a la comunitat virtual de la UOC d'acord amb la tipologia d'usuari, l'idioma i el seu entorn d'aprenentatge. En aquest article s'exposa el procés d'anàlisi de diferents productes i la implementació de Verity a la BUOC amb els desenvolupaments realitzats en les diferents aplicacions perquè el motor de cerca pugui fer la seva funció.
Resumo:
In Huntington's disease (HD), the expansion of polyglutamine (polyQ) repeats at the N terminus of the ubiquitous protein huntingtin (htt) leads to neurodegeneration in specific brain areas. Neurons degenerating in HD develop synaptic dysfunctions. However, it is unknown whether mutant htt impacts synaptic function in general. To investigate that, we have focused on the nerve terminals of motor neurons that typically do not degenerate in HD. Here, we have studied synaptic transmission at the neuromuscular junction of transgenic mice expressing a mutant form of htt (R6/1 mice). We have found that the size and frequency of miniature endplate potentials are similar in R6/1 and control mice. In contrast, the amplitude of evoked endplate potentials in R6/1 mice is increased compared to controls. Consistent with a presynaptic increase of release probability, synaptic depression under high-frequency stimulation is higher in R6/1 mice. In addition, no changes were detected in the size and dynamics of the recycling synaptic vesicle pool. Moreover, we have found increased amounts of the synaptic vesicle proteins synaptobrevin 1,2/VAMP 1,2 and cysteine string protein-α, and the SNARE protein SNAP-25, concomitant with normal levels of other synaptic vesicle markers. Our results reveal that the transgenic expression of a mutant form of htt leads to an unexpected gain of synaptic function. That phenotype is likely not secondary to neurodegeneration and might be due to a primary deregulation in synaptic protein levels. Our findings could be relevant to understand synaptic toxic effects of proteins with abnormal polyQ repeats.
Resumo:
Motor inhibitory control plays a central role in adaptive behaviors during the entire lifespan. Inhibitory motor control refers to the ability to stop all (global) or a part (selective) of a planned or ongoing motor action. Although the neural processing underlying the global inhibitory control has received much attention from cognitive neuroscientists, brain modulations that occur during selective inhibitory motor control remain unknown. The aim of the present thesis is to investigate the spatio-temporal brain processes of selective inhibitory motor control in young and old adults using high-density electroencephalography. In the first part, we focus on early (preparatory period) spatio-temporal brain processes involved in selective and global inhibitory control in young (study I) and old adults (study II) using a modified Go/No-go task. In study I, we distinguished global from selective inhibition in the early attentional stage of inhibitory control and provided neurophysiological evidence in favor of the combination model. In study II, we showed an under-recruitment of neural resources associated with preservation of performance in old adults during selective inhibition, suggesting efficient cerebral and behavioral adaptations to environmental changes. In the second part, we investigate beta oscillations in the late (post-execution period) spatio-temporal brain processes of selective inhibition during a motor Switching task (i.e., tapping movement from bimanual to unimanual) in young (study III) and old adults (study IV). In study III, we identified concomitant beta synchronization related (i) to sensory reafference processes, which enabled the stabilization of the movement that was perturbed after switching, and (ii) to active inhibition processes that prevented movement of the stopping hand. In study IV, we demonstrated a larger beta synchronization in frontal and parietal regions in old adults compared to young adults, suggesting age-related brain modulations in active inhibition processes. Apart from contributing to a basic understanding of the electrocortical dynamics underlying inhibitory motor control, the findings of the present studies contribute to knowledge regarding the further establishment of specific trainings with aging. -- Le contrôle de l'inhibition motrice joue un rôle central dans les adaptations comportementales quel que soit l'âge. L'inhibition motrice se réfère à la capacité à arrêter entièrement (globale) ou en partie (sélective) une action motrice planifiée ou en cours. Bien que les processus neuronaux sous-jacents de l'inhibition globale aient suscité un grand intérêt auprès des neurosciences cognitives, les modulations cérébrales dans le contrôle de l'inhibition motrice sélective sont encore peu connues. Le but de cette thèse est d'étudier les processus cérébraux spatio-temporels du contrôle de l'inhibition motrice sélective chez les adultes jeunes et âgés en utilisant l'électroencéphalogramme à haute densité. Dans la première partie, nous comparons les processus cérébraux spatio-temporels précoces (préparation motrice) de l'inhibition sélective et globale chez des adultes jeunes (étude I) et âgés (étude II) en utilisant une tâche Go/No-go modifiée. Dans l'étude I, nous avons distingué l'inhibition globale et sélective au niveau des processus attentionnels précoces du contrôle de l'inhibition et nous avons apporté des preuves neurophysiologiques de l'existence d'un modèle de combinaison. Dans l'étude II, nous avons montré une sous-activation neuronale associée à un maintien de la performance dans l'inhibition sélective chez les adultes âgés, suggérant des adaptations cérébrales et comportementales aux contraintes environnementales. Dans la seconde partie, nous examinons les processus cérébraux spatio-temporels tardifs (post-exécution motrice) de l'inhibition sélective pendant une tâche de Switching (tapping bimanuel vers un tapping unimanuel) chez des adultes jeunes (étude III) et âgés (étude IV). Dans l'étude III, nous avons distingué des synchronisations beta liées (i) au traitement des réafférences sensorielles permettant de stabiliser le mouvement perturbé après le switching, et (ii) aux processus d'inhibition active afin d'empêcher les mouvements de la main arrêtée. Dans l'étude IV, cette synchronisation beta était plus forte dans les régions frontales et pariétales chez les âgés par rapport aux jeunes adultes suggérant des modulations cérébrales de l'inhibition active avec l'âge. Outre la contribution fondamentale sur la compréhension des dynamiques électrocorticales dans le contrôle de l'inhibition motrice, les résultats de ces études contribuent à développer les connaissances pour la mise en place de programmes d'entraînements adaptés aux personnes âgées.
Resumo:
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage.
Resumo:
INTRODUCTION Although several parameters have been proposed to predict the hemodynamic response to fluid expansion in critically ill patients, most of them are invasive or require the use of special monitoring devices. The aim of this study is to determine whether noninvasive evaluation of respiratory variation of brachial artery peak velocity flow measured using Doppler ultrasound could predict fluid responsiveness in mechanically ventilated patients. METHODS We conducted a prospective clinical research in a 17-bed multidisciplinary ICU and included 38 mechanically ventilated patients for whom fluid administration was planned due to the presence of acute circulatory failure. Volume expansion (VE) was performed with 500 mL of a synthetic colloid. Patients were classified as responders if stroke volume index (SVi) increased >or= 15% after VE. The respiratory variation in Vpeakbrach (DeltaVpeakbrach) was calculated as the difference between maximum and minimum values of Vpeakbrach over a single respiratory cycle, divided by the mean of the two values and expressed as a percentage. Radial arterial pressure variation (DeltaPPrad) and stroke volume variation measured using the FloTrac/Vigileo system (DeltaSVVigileo), were also calculated. RESULTS VE increased SVi by >or= 15% in 19 patients (responders). At baseline, DeltaVpeakbrach, DeltaPPrad and DeltaSVVigileo were significantly higher in responder than nonresponder patients [14 vs 8%; 18 vs. 5%; 13 vs 8%; P < 0.0001, respectively). A DeltaVpeakbrach value >10% predicted fluid responsiveness with a sensitivity of 74% and a specificity of 95%. A DeltaPPrad value >10% and a DeltaSVVigileo >11% predicted volume responsiveness with a sensitivity of 95% and 79%, and a specificity of 95% and 89%, respectively. CONCLUSIONS Respiratory variations in brachial artery peak velocity could be a feasible tool for the noninvasive assessment of fluid responsiveness in patients with mechanical ventilatory support and acute circulatory failure. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT00890071.
Resumo:
BACKGROUND: The ideal local anesthetic regime for femoral nerve block that balances analgesia with mobility after total knee arthroplasty (TKA) remains undefined. QUESTIONS/PURPOSES: We compared two volumes and concentrations of a fixed dose of ropivacaine for continuous femoral nerve block after TKA to a single injection femoral nerve block with ropivacaine to determine (1) time to discharge readiness; (2) early pain scores and analgesic consumption; and (3) functional outcomes, including range of motion and WOMAC scores at the time of recovery. METHODS: Ninety-nine patients were allocated to one of three continuous femoral nerve block groups for this randomized, placebo-controlled, double-blind trial: a high concentration group (ropivacaine 0.2% infusion), a low concentration group (ropivacaine 0.1% infusion), or a placebo infusion group (saline 0.9% infusion). Infusions were discontinued on postoperative Day (POD) 2. The primary outcome was time to discharge readiness. Secondary outcomes included opioid consumption, pain, and functional outcomes. Ninety-three patients completed the study protocol; the study was halted early because of unanticipated changes to pain protocols at the host institution, by which time only 61% of the required number of patients had been enrolled. RESULTS: With the numbers available, the mean time to discharge readiness was not different between groups (high concentration group, 62 hours [95% confidence interval [CI], 51-72 hours]; low concentration group, 73 hours [95% CI, 63-83 hours]; placebo infusion group 65 hours [95% CI, 56-75 hours]; p = 0.27). Patients in the low concentration group consumed significantly less morphine during the period of infusion (POD 1, high concentration group, 56 mg [95% CI, 42-70 mg]; low concentration group, 35 mg [95% CI, 27-43 mg]; placebo infusion group, 48 mg [95% CI, 38-59 mg], p = 0.02; POD 2, high concentration group, 50 mg [95% CI, 41-60 mg]; low concentration group, 33 mg [95% CI, 24-42 mg]; placebo infusion group, 39 mg [95% CI, 30-48 mg], p = 0.04); however, there were no important differences in pain scores or opioid-related side effects with the numbers available. Likewise, there were no important differences in functional outcomes between groups. CONCLUSIONS: Based on this study, which was terminated prematurely before the desired sample size could be achieved, we were unable to demonstrate that varying the concentration and volume of a fixed-dose ropivacaine infusion for continuous femoral nerve block influences time to discharge readiness when compared with a conventional single-injection femoral nerve block after TKA. A low concentration of ropivacaine infusion can reduce postoperative opioid consumption but without any important differences in pain scores, side effects, or functional outcomes. These pilot data may be used to inform the statistical power of future randomized trials. LEVEL OF EVIDENCE: Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Introduction: Motor abilities in schoolchildren have been decreasing in the last two decades (Bös, 2003, Tomkinson et al., 2003). This may be related to the dramatic increase in overweight and adiposity during the same time period. Children of migrant background are especially affected (Lasserre et al., 2007). But little is known about the relationship between BMI and migration background and motor abilities in preschool children. Methods/Design We carried out a cross-sectional analysis with 665 children (age 5.1 ± 0.6 years; 49.8 % female) of 40 randomly selected kindergarten classes from German and French speaking regions in Switzerland with a high migrant background. We investigated BMI, cardiorespiratory fitness (20 m shuttle run), static (displacement of center of pressure (COP)) and dynamic (balancing forward on a beam) postural control and overall fitness (obstacle course). Results: Of the children, 9.6 % were overweight, 10.5 % were obese (Swiss national percentiles) and 72.8 % were of migrant background (at least one parent born outside of Switzerland). Mean BMI from children of non-migrant background was 15.5 ± 1.1 kg/m2, while migrant children had a mean BMI of 15.8 ± 1.7 kg/m2 (p=0.08). Normal-weight children performed better in cardiorespiratory fitness (3.1 ± 1.4 vs. 2.6 ± 1.1 stages, p<0.001), overall fitness (18.9 ± 4.4 vs. 20.8 ± 4.6 sec, p<0.001) and in dynamic balance (4.9 ± 3.5 vs. 3.8 ± 2.5 steps, p<0.001) compared to overweight and obese children, while the latter had less postural sway (COP: 956 ± 302 vs. 1021 ± 212 mm, p=0.008). There was a clear inverse dose-response relationship between weight status and dynamic motor abilities. There were no significant differences in most tested motor abilities between non-migrant and migrant. The latter performed less well in only one motor test (overall fitness: 20.2 ± 5.2 vs. 18.3 ± 3.5 sec, p<0.001). These findings persisted after adjustment for BMI. Conclusion In preschool children, differences in motor abilities are already present between normal weight and overweight/obese children. However, migrant children demonstrate similar motor abilities compared to non-migrant children for almost all tests, despite their slightly higher BMI.
Resumo:
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.