996 resultados para Measurement uncertainty
Resumo:
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic chip to create a device for in-field detection of arsenic, a contaminant of well known toxicity and carcinogenicity in potable water both in industrialized and developing countries. Cell-beads stored in the microfluidics chip at -20°C retained inducibility up to one month and we were able to reproducibly discriminate concentrations of 10 and 50 μg arsenite per L (the drinking water standards for European countries and the United States, and for the developing countries, respectively) from the blank in less than 200 minutes. We discuss here the reasons for decreasing bioreporter signal development upon increased storage of cell beads but also show how this decrease can be reduced, leading to a faster detection and a longer lifetime of the device.
Resumo:
Tutkimus pyrkii selvittämään, kuinka tehokas suorituskykymittaristo voidaan parhaiten suunnitella pk-yrityksessä. Tutkimuksen tavoitteena on luoda suorituskykymittaristo pienen kohdeyrityksen johtajien tarpeisiin. Päähuomion kohteena on yrityksen tilaus-toimitusketju ja arvoverkko. Työ on luonteeltaan kvalitatiivinen toimintatutkimus, joka noudattaa toiminta-analyyttista tutkimusotetta. Työn teoriaosassa selvitetään, kuinka suorituskyvyn mittaaminen sekä materiaali-, tieto- ja rahavirtojen hallinta on kehittynyt viime vuosina pk-yrityksen näkökulmasta. Mittariston suunnittelu aloitetaan kohdeyrityksen perusteellisella analyysilla. Tämän pohjalta määritellään yrityksen kriittiset menestystekijät, joista lopulta johdetaan suorituskykymittarit. Tutkimuksen perusteella voidaan todeta, että yleinen asenne mittaamista kohtaan, strategian huomioinnin puute sekä tietojärjestelmien rajoitteet ovat päähaasteita pk-yrityksen suorituskyvyn mittaamisessa. Mittareiden tuleekin olla melko yksinkertaisia ja helppoja käyttää, jotta mittaamisen ei koettaisi kuluttavan rajallisia resursseja liikaa. Mittariston tulee kuitenkin antaa kokonaisvaltainen kuva yrityksen suorituskyvystä, johon vaikuttavat kaikki arvoverkon osapuolet ja heidän yhteistyö toistensa kanssa.
Resumo:
Tutkimuksen tavoitteena oli tapaustutkimuksen avulla analysoida case yrityksen tuotekehitystoiminnan menestyksen kulmakivet ja edellytykset yrityksen arvon lisäämiseksi. Case osa toteutettiin kolmen toisiaan tukevan aineiston avulla. Tiedonkeruumenetelminä olivat haastattelu, kyselytutkimussekä yrityksessä toteutettujen projektien analysointi. Tutkielman teoriaosan ensimmäisessä vaiheessa analysoitiin tuotekehityksen avaintekijöitä. Käsittelyn lähtökohtana toimi kolme tuotekehityksen perustekijää: tuotestrategia, kehitysprosessi ja saatavilla olevat resurssit. Teoriaosuudessa analysoitiin myös tuotekehitystoiminnan menestyksen mittaamista. Kolmas osa kirjallisuusosuudessa on tuotekehitykseen olennaisesti kuuluva riskien tunnistaminen ja hallinta. Tutkielman empiirisessä osiossa nostettiin esiin kohdeyrityksen tuotekehitystoiminnan tärkeimmät tekijät. Tulokseksi saatiin, että asiakasyhteistyö, tuotteen laadun varmistava projektin toteutus sekä resurssien määrä määrittävät pitkälti tuotekehitystoiminnan tason yrityksessä. Näiden tekijöiden onnistuneella yhteensovittamisella yritys pystyy säilyttämään kilpailuasemansa. Pitkän aikavälin arvoa lisäävä tuotekehitystoiminta edellyttää edellä olleiden tekijöiden ohella myös panostusta innovatiivisuuteen, riskinhallintanäkökulman huomioimiseen projektien valinnassa sekä tuotetun arvon mittaamiseen. Kilpailuedun saavuttaminen uusilla innovatiivisilla tuotteilla, joustavuuden lisääminen projekteihin sekä oppiminen toteutetuista hankkeista ovat avaintekijöitä tulevaisuuden menestykselle
Resumo:
Tämän Pro gradu-tutkielman tavoitteena olirakentaa esiymmärrys sosiaalisen pääoman roolista ja mittaamisesta uuden teknologian start-up yrityksissä. Pääasiallisena tarkoituksena tässä tutkimuksessa olilöytää sosiaalisen pääoman ja start-up yrityksen tuloksellisuuden välille yhdistävä tekijä. Tutkimuksen empiirinen aineisto kerättiin pääasiallisesti kuuden OKO Venture Capitalin sijoitusportfolioon sisältyvien case-yritysten kvalitatiivisten teemahaastatteluiden sekä kvantitatiivisten kyselylomakkeiden avulla. Kvalitatiivisten haastatteluiden tulosten perusteella sosiaalisen pääoman ja tuloksellisuuden välille löytyi yhdistävä tekijä, jota käytettiin myöhemmin hyväksi kvantitatiivisessa kyselylomakkeessa. Tämän tutkielman tulokset osoittivat, että startegisen päätöksenteon kautta sosiaalinen pääoma vaikuttaa osittain start-up yritysten tuloksellisuuteen. Manageriaalisesti tärkempi löydös tässä tutkimuksessa oli kuitenkin se, että sosiaalista pääomaa voidaan käyttää hyväksi ennustettaessa uuden teknologian start-up yritysten tulevaisuuden kassavirtoja.
Resumo:
Due to the intense international competition, demanding, and sophisticated customers, and diverse transforming technological change, organizations need to renew their products and services by allocating resources on research and development (R&D). Managing R&D is complex, but vital for many organizations to survive in the dynamic, turbulent environment. Thus, the increased interest among decision-makers towards finding the right performance measures for R&D is understandable. The measures or evaluation methods of R&D performance can be utilized for multiple purposes; for strategic control, for justifying the existence of R&D, for providing information and improving activities, as well as for the purposes of motivating and benchmarking. The earlier research in the field of R&D performance analysis has generally focused on either the activities and considerable factors and dimensions - e.g. strategic perspectives, purposes of measurement, levels of analysis, types of R&D or phases of R&D process - prior to the selection of R&Dperformance measures, or on proposed principles or actual implementation of theselection or design processes of R&D performance measures or measurement systems. This study aims at integrating the consideration of essential factors anddimensions of R&D performance analysis to developed selection processes of R&D measures, which have been applied in real-world organizations. The earlier models for corporate performance measurement that can be found in the literature, are to some extent adaptable also to the development of measurement systemsand selecting the measures in R&D activities. However, it is necessary to emphasize the special aspects related to the measurement of R&D performance in a way that make the development of new approaches for especially R&D performance measure selection necessary: First, the special characteristics of R&D - such as the long time lag between the inputs and outcomes, as well as the overall complexity and difficult coordination of activities - influence the R&D performance analysis problems, such as the need for more systematic, objective, balanced and multi-dimensional approaches for R&D measure selection, as well as the incompatibility of R&D measurement systems to other corporate measurement systems and vice versa. Secondly, the above-mentioned characteristics and challenges bring forth the significance of the influencing factors and dimensions that need to be recognized in order to derive the selection criteria for measures and choose the right R&D metrics, which is the most crucial step in the measurement system development process. The main purpose of this study is to support the management and control of the research and development activities of organizations by increasing the understanding of R&D performance analysis, clarifying the main factors related to the selection of R&D measures and by providing novel types of approaches and methods for systematizing the whole strategy- and business-based selection and development process of R&D indicators.The final aim of the research is to support the management in their decision making of R&D with suitable, systematically chosen measures or evaluation methods of R&D performance. Thus, the emphasis in most sub-areas of the present research has been on the promotion of the selection and development process of R&D indicators with the help of the different tools and decision support systems, i.e. the research has normative features through providing guidelines by novel types of approaches. The gathering of data and conducting case studies in metal and electronic industry companies, in the information and communications technology (ICT) sector, and in non-profit organizations helped us to formulate a comprehensive picture of the main challenges of R&D performance analysis in different organizations, which is essential, as recognition of the most importantproblem areas is a very crucial element in the constructive research approach utilized in this study. Multiple practical benefits regarding the defined problemareas could be found in the various constructed approaches presented in this dissertation: 1) the selection of R&D measures became more systematic when compared to the empirical analysis, as it was common that there were no systematic approaches utilized in the studied organizations earlier; 2) the evaluation methods or measures of R&D chosen with the help of the developed approaches can be more directly utilized in the decision-making, because of the thorough consideration of the purpose of measurement, as well as other dimensions of measurement; 3) more balance to the set of R&D measures was desired and gained throughthe holistic approaches to the selection processes; and 4) more objectivity wasgained through organizing the selection processes, as the earlier systems were considered subjective in many organizations. Scientifically, this dissertation aims to make a contribution to the present body of knowledge of R&D performance analysis by facilitating dealing with the versatility and challenges of R&D performance analysis, as well as the factors and dimensions influencing the selection of R&D performance measures, and by integrating these aspects to the developed novel types of approaches, methods and tools in the selection processes of R&D measures, applied in real-world organizations. In the whole research, facilitation of dealing with the versatility and challenges in R&D performance analysis, as well as the factors and dimensions influencing the R&D performance measure selection are strongly integrated with the constructed approaches. Thus, the research meets the above-mentioned purposes and objectives of the dissertation from the scientific as well as from the practical point of view.
Resumo:
This paper describes a mesurement system designed to register the displacement of the legs using a two-dimensional laser range sensor with a scanning plane parallel to the ground and extract gait parameters. In the proposed methodology, the position of the legs is estimated by fitting two circles with the laser points that define their contour and the gait parameters are extracted applying a step-line model to the estimated displacement of the legs to reduce uncertainty in the determination of the stand and swing phase of the gait. Results obtained in a range up to 8 m shows that the systematic error in the location of one static leg is lower than 10 mm with and standard deviation lower than 8 mm; this deviation increases to 11 mm in the case of a moving leg. The proposed measurement system has been applied to estimate the gait parameters of six volunteers in a preliminary walking experiment.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
Postmortem human chorionic gonadotrophin (HCG) blood assay can confirm postmortem diagnosis of pregnancy or document situations in which HCG levels are elevated. In some cases, however, blood sampling is not possible at autopsy. In this study, HCG was quantified by enzyme-linked fluorescent assay (ELFA) in the bile (n = 5), vitreous humor (n = 4), and postmortem blood (n = 4) of five pregnant women. There were no false negatives in the pregnant subjects (n = 5) or false positives in controls (n = 34), enabling this test to be recommended for routine use in forensic contexts in which the detection of elevated HCG levels could be of interest.
Resumo:
In this commentary, we argue that the term 'prediction' is overly used when in fact, referring to foundational writings of de Finetti, the correspondent term should be inference. In particular, we intend (i) to summarize and clarify relevant subject matter on prediction from established statistical theory, and (ii) point out the logic of this understanding with respect practical uses of the term prediction. Written from an interdisciplinary perspective, associating statistics and forensic science as an example, this discussion also connects to related fields such as medical diagnosis and other areas of application where reasoning based on scientific results is practiced in societal relevant contexts. This includes forensic psychology that uses prediction as part of its vocabulary when dealing with matters that arise in the course of legal proceedings.
Resumo:
Sap flow could be used as physiological parameter to assist irrigation of screen house citrus nursery trees by continuous water consumption estimation. Herein we report a first set of results indicating the potential use of the heat dissipation method for sap flow measurement in containerized citrus nursery trees. 'Valencia' sweet orange [Citrus sinensis (L.) Osbeck] budded on 'Rangpur' lime (Citrus limonia Osbeck) was evaluated for 30 days during summer. Heat dissipation probes and thermocouple sensors were constructed with low-cost and easily available materials in order to improve accessibility of the method. Sap flow showed high correlation to air temperature inside the screen house. However, errors due to natural thermal gradient and plant tissue injuries affected measurement precision. Transpiration estimated by sap flow measurement was four times higher than gravimetric measurement. Improved micro-probes, adequate method calibration, and non-toxic insulating materials should be further investigated.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.