981 resultados para K-uniformly Convex Functions
Resumo:
OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.
Resumo:
Several methods are available for coding body movement in nonverbal behavior research, but there is no consensus on a reliable coding system that can be used for the study of emotion expression. Adopting an integrative approach, we developed a new method, the Body Action and Posture (BAP) coding system, for the time-aligned micro description of body movement on an anatomical level (different articulations of body parts), a form level (direction and orientation of movement), and a functional level (communicative and self-regulatory functions). We applied the system to a new corpus of acted emotion portrayals, examined its comprehensiveness and demonstrated intercoder reliability at three levels: a) occurrence, b) temporal precision and c) segmentation. We discuss issues for further validation and propose some research applications.
Resumo:
The purpose of this study was to prospectively compare free-breathing navigator-gated cardiac-triggered three-dimensional steady-state free precession (SSFP) spin-labeling coronary magnetic resonance (MR) angiography performed by using Cartesian k-space sampling with that performed by using radial k-space sampling. A new dedicated placement of the two-dimensional selective labeling pulse and an individually adjusted labeling delay time approved by the institutional review board were used. In 14 volunteers (eight men, six women; mean age, 28.8 years) who gave informed consent, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, vessel length, and subjective image quality were investigated. Differences between groups were analyzed with nonparametric tests (Wilcoxon, Pearson chi2). Radial imaging, as compared with Cartesian imaging, resulted in a significant reduction in the severity of motion artifacts, as well as an increase in SNR (26.9 vs 12.0, P < .05) in the coronary arteries and CNR (23.1 vs 8.8, P < .05) between the coronary arteries and the myocardium. A tendency toward improved vessel sharpness and vessel length was also found with radial imaging. Radial SSFP imaging is a promising technique for spin-labeling coronary MR angiography.
Resumo:
BACKGROUND: The management of pediatric laryngotracheal stenosis (LTS) can be challenging, and laryngotracheal reconstruction (LTR) with cartilage interposition grafting remains the mainstay of surgical treatment for pediatric LTS in most experienced centers. The purpose of this study was to report the results of this procedure in a center where primary cricotracheal resection is frequently performed. METHODS: A retrospective chart review was performed on 45 patients who underwent LTR in our hospital between October 1997 and July 2012. Demographic characteristics and information on the preoperative status, stenosis, and operation were collected. Primary outcomes were measured as overall (ODR) and operation-specific (OSDR) decannulation rates and secondary outcomes as morbidity, mortality, and postoperative functional results. RESULTS: ODR and OSDR were 86.7% (39/45) and 66.7% (30/45), respectively. Re-stenosis was observed in 11/45 (24%) patients, all of whom were endoscopically or surgically treated. Revision surgery was performed in 10 patients, 6 for re-stenosis and 2 for peristomial tracheomalacia. Two children died of mucous obstruction of tracheostomy tube at 3 and 6 months postoperatively (4.4%). Respiratory, voice, and swallowing functions were excellent or good in 86, 75, and 84% of patients, respectively. CONCLUSIONS: LTR for pediatric LTS has high decannulation rates with acceptable morbidity and mortality in selected patients. Most LTR procedures were double-stage for lower grade subglottic stenoses associated with glottic involvement that required stenting. Careful preoperative evaluation and adequate surgical indications are extremely important to achieve high decannulation rates.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la Stanford University, EEUU, entre 2007 i 2009. El present projecte es basa 1) en la síntesi de cadenes d'ARN dirigides a la inhibició de l'expressió gènica per un mecanisme d'ARN d'interferència (siRNAs o short interefering RNAs) i 2) en l'avaluació de l'activitat in vitro d'aquests oligonucleòtids en cultius cel•lulars. Concretament, la meva recerca ha estat enfocada principalment a l'estudi de cadenes de siRNA modificades amb nucleobases 5-metil i 5-propinil pirimidíniques. Es tractava d'avaluar l'efecte que exerceixen els factors estèrics en el major groove (solc major) dels siRNAs sobre la seva activitat biològica. En aquest sentit, he dut aterme síntesi de fosforamidits de nucleòsis pirimidínics modificats a la posició C-5 de la nucleobase. A continuació he incorporat aquestes unitats nucleosídiques en cadenes d'ARN emprant un sintetitzador d’ADN/ARN i he estudiat l'estabilitat dels corresponents dúplexs d'ARN mitjançant experiments de desnaturalització tèrmica. Finalment he dut a terme experiments d'inhibició de l'expressió gènica en cèl.lules HeLa per tal d'avaluar l'activitat biològia d'aquests siRNAs modificats. Els resultats d'aquests estudis han posat de manifest que la presència de grups voluminosos com el propinil a l'extrem 5' del dúplex de siRNA (definit per la cadena guia o antisense) influeix de forma molt negativa en la seva activitat biològica. En canvi, grups menys voluminosos com el metil hi influeixen positivament, de manera que algunes de les cadenes sintetitzades han resultat ser més actives que els corresponents siRNAs naturals (wild type siRNAs). A més, aquest tipus de modificació contribueix positivament en l'estabilitat de cadenes de siRNA en sèrum humà. Aquest treball ha estat publicat (Terrazas, M.; Kool, E.T. "Major Groove Modifications Improve siRNA Stability and Biological Activity" Nucleic Acids Res. 2009, in press).
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
Minutes of the Meeting of the Public Health Functions Project Team 21 February 2006
Resumo:
This report describes the partial purification and the characteristics of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) from an amphibian source. Toad kidney microsomes were solubilized with sodium deoxycholate and further purified by sodium dodecyl sulphate treatment and sucrose gradient centrifugation, according to the methods described by Lane et al. [(1973) J. Biol. Chem. 248, 7197--7200], Jørgensen [(1974) Biochim. Biophys. Acta 356, 36--52] and Hayashi et al. [(1977) Biochim. Biophys. Acta 482, 185--196]. (Na+ + K+)-ATPase preparations with specific activities up to 1000 mumol Pi/mg protein per h were obtained. Mg2+-ATPase only accounted for about 2% of the total ATPase activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed three major protein bands with molecular weights of 116 000, 62 000 and 26 000. The 116 000 dalton protein was phosphorylated by [gamma-32P]ATP in the presence of sodium but not in the presence of potassium. The 62 000 dalton component stained for glycoproteins. The Km for ATP was 0.40 mM, for Na+ 12.29 mM and for K+ 1.14 mM. The Ki for ouabain was 35 micron. Temperature activation curves showed two activity peaks at 37 degrees C and at 50 degrees C. The break in the Arrhenius plot of activity versus temperature appeared at 15 degrees C.
Resumo:
O-Hexanoyl-3,5-diiodo-N-(4-azido-2-nitro-phenyl)tyramine has been used after photochemical conversion into the reactive nitrene to label (Na+,K+)-ATPase from Bufo marinus toad kidney. Immunochemical evidence indicates that the reagent labels both subunits of the enzyme in partially purified form as well as in microsomal membranes. These results support the view that the glycoprotein subunit, like the catalytic subunit, possesses hydrophobic domains by which it is integrated into the plasma membrane.
Resumo:
Recently, corticosteroid hormone-induced factor (CHIF) and the gamma-subunit, two members of the FXYD family of small proteins, have been identified as regulators of renal Na,K-ATPase. In this study, we have investigated the tissue distribution and the structural and functional properties of FXYD7, another family member which has not yet been characterized. Expressed exclusively in the brain, FXYD7 is a type I membrane protein bearing N-terminal, post-translationally added modifications on threonine residues, most probably O-glycosylations that are important for protein stabilization. Expressed in Xenopus oocytes, FXYD7 can interact with Na,K-ATPase alpha 1-beta 1, alpha 2-beta 1 and alpha 3-beta 1 but not with alpha-beta 2 isozymes, whereas, in brain, it is only associated with alpha 1-beta isozymes. FXYD7 decreases the apparent K(+) affinity of alpha 1-beta 1 and alpha 2-beta 1, but not of alpha 3-beta1 isozymes. These data suggest that FXYD7 is a novel, tissue- and isoform-specific Na,K-ATPase regulator which could play an important role in neuronal excitability.
Resumo:
In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.