786 resultados para Incremental Clustering
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.
Resumo:
Data refinements are refinement steps in which a program’s local data structures are changed. Data refinement proof obligations require the software designer to find an abstraction relation that relates the states of the original and new program. In this paper we describe an algorithm that helps a designer find an abstraction relation for a proposed refinement. Given sufficient time and space, the algorithm can find a minimal abstraction relation, and thus show that the refinement holds. As it executes, the algorithm displays mappings that cannot be in any abstraction relation. When the algorithm is not given sufficient resources to terminate, these mappings can help the designer find a suitable abstraction relation. The same algorithm can be used to test an abstraction relation supplied by the designer.
Resumo:
In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.
Resumo:
In patients with Pick's disease (PD), high densities of tau positive Pick bodies (PB) have been observed within the granule cell layer of the dentate gyrus. This study investigated the spatial patterns of PB along the granule cell layer in coronal sections of the hippocampus in eight patients with PD. In all patients, there was evidence of clustering of PB within the granule cell layer; however, there was considerable variation in the pattern of clustering. In five patients, the clusters of PB were regularly distributed along the dentate gyms, and in two of these patients, the smaller clusters were aggregated into larger superclusters. In three patients, a single large cluster of PB, more than 1200 μm in diameter, was present. Clustering of PB may reflect a primary degenerative process within the granule cells or the degeneration of pathways that project to the dentate gyrus.
Resumo:
This study tested three hypotheses: (1) that there is clustering of the neuronal cytoplasmic inclusions (NCI), astrocytic plaques (AP) and ballooned neurons (BN) in corticobasal degeneration (CBD), (2) that the clusters of NCI and BN are not spatially correlated, and (3) that the lesions are correlated with disease ‘stage’. In 50% of the regions, clusters of lesions were 400–800 µm in diameter and regularly distributed parallel to the tissue boundary. Clusters of NCI and BN were larger in laminae II/III and V/VI, respectively. In a third of regions, the clusters of BN and NCI were negatively spatially correlated. Cluster size of the BN in the parahippocampal gyrus (PHG) was positively correlated with disease ‘stage’. The data suggest the following: (1) degeneration of the cortico-cortical pathways in CBD, (2) clusters of NCI and BN may affect different anatomical pathways and (3) BN may develop after the NCI in the PHG.
Resumo:
In Alzheimer's disease (AD), neurofibrillary tangles (NFT) occur within neurons in both the upper and lower cortical laminae. Using a statistical method that estimates the size and spacing of NFT clusters along the cortex parallel to the pia mater, two hypotheses were tested: 1) that the cluster size and distribution of the NFT in gyri of the temporal lobe reflect degeneration of the feedforward (FF) and feedback (FB) cortico-cortical pathways, and 2) that there is a spatial relationship between the clusters of NFT in the upper and lower laminae. In 16 temporal lobe gyri from 10 cases of sporadic AD, NFT were present in both the upper and lower laminae in 11/16 (69%) gyri and in either the upper or lower laminae in 5/16 (31%) gyri. Clustering of the NFT was observed in all gyri. A significant peak-to-peak distance was observed in the upper laminae in 13/15 (87%) gyri and in the lower laminae in 8/ 12 (67%) gyri, suggesting a regularly repeating pattern of NFT clusters along the cortex. The regularly distributed clusters of NFT were between 500 and 800 μm in size, the estimated size of the cells of origin of the FF and FB cortico-cortical projections, in the upper laminae of 6/13 (46%) gyri and in the lower laminae of 2/8 (25%) gyri. Clusters of NFT in the upper laminae were spatially correlated (in phase) with those in the lower laminae in 5/16 (31%) gyri. The clustering patterns of the NFT are consistent with their formation in relation to the FF and FB cortico-cortical pathways. In most gyri, NFT clusters appeared to develop independently in the upper and lower laminae.