823 resultados para Graph-based approach


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oil spills cause great damage to coastal habitats, especially when rapid and suitable response measures are not taken. Establishing high priority areas is fundamental for the operation of response teams. Under this context and considering the need for keeping all geographical information up-to-date for emergencial use, the present study proposes employing a decision tree coupled with a knowledge-based approach using GIS to assign oil sensitivity indices to Brazilian coastal habitats. The modelled system works based on rules set by the official standards of Brazilian Federal Environment Organ. We tested it on one of the littoral regions of Brazil where transportation of petroleum is most intense: the coast of the municipalities of Sao Sebastiao and Caraguatatuba in the northern littoral of São Paulo state, Brazil. The system automatically ranked the littoral sensitivity index of the study area habitats according to geographical conditions during summer and winter; since index ranks of some habitats varied between these seasons because of sediment alterations. The obtained results illustrate the great potential of the proposed system in generating ESI maps and in aiding response teams during emergency operations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concept drift is a problem of increasing importance in machine learning and data mining. Data sets under analysis are no longer only static databases, but also data streams in which concepts and data distributions may not be stable over time. However, most learning algorithms produced so far are based on the assumption that data comes from a fixed distribution, so they are not suitable to handle concept drifts. Moreover, some concept drifts applications requires fast response, which means an algorithm must always be (re) trained with the latest available data. But the process of labeling data is usually expensive and/or time consuming when compared to unlabeled data acquisition, thus only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are also based on the assumption that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenge in machine learning. Recently, a particle competition and cooperation approach was used to realize graph-based semi-supervised learning from static data. In this paper, we extend that approach to handle data streams and concept drift. The result is a passive algorithm using a single classifier, which naturally adapts to concept changes, without any explicit drift detection mechanism. Its built-in mechanisms provide a natural way of learning from new data, gradually forgetting older knowledge as older labeled data items became less influent on the classification of newer data items. Some computer simulation are presented, showing the effectiveness of the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Software product line (SPL) engineering offers several advantages in the development of families of software products such as reduced costs, high quality and a short time to market. A software product line is a set of software intensive systems, each of which shares a common core set of functionalities, but also differs from the other products through customization tailored to fit the needs of individual groups of customers. The differences between products within the family are well-understood and organized into a feature model that represents the variability of the SPL. Products can then be built by generating and composing features described in the feature model. Testing of software product lines has become a bottleneck in the SPL development lifecycle, since many of the techniques used in their testing have been borrowed from traditional software testing and do not directly take advantage of the similarities between products. This limits the overall gains that can be achieved in SPL engineering. Recent work proposed by both industry and the research community for improving SPL testing has begun to consider this problem, but there is still a need for better testing techniques that are tailored to SPL development. In this thesis, I make two primary contributions to software product line testing. First I propose a new definition for testability of SPLs that is based on the ability to re-use test cases between products without a loss of fault detection effectiveness. I build on this idea to identify elements of the feature model that contribute positively and/or negatively towards SPL testability. Second, I provide a graph based testing approach called the FIG Basis Path method that selects products and features for testing based on a feature dependency graph. This method should increase our ability to re-use results of test cases across successive products in the family and reduce testing effort. I report the results of a case study involving several non-trivial SPLs and show that for these objects, the FIG Basis Path method is as effective as testing all products, but requires us to test no more than 24% of the products in the SPL.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Land development in the vicinity of airports often leads to land-use that can attract birds that are hazardous to aviation operations. For this reason, certain forms of land-use have traditionally been discouraged within prescribed distances of Canadian airports. However, this often leads to an unrealistic prohibition of land-use in the vicinity of airports located in urban settings. Furthermore, it is often unclear that the desired safety goals have been achieved. This paper describes a model that was created to assist in the development of zoning regulations for a future airport site in Canada. The framework links land-use to bird-related safety-risks and aircraft operations by categorizing the predictable relationships between: (i) different land uses found in urbanized and urbanizing settings near airports; (ii) bird species; and (iii) the different safety-risks to aircraft during various phases of flight. The latter is assessed relative to the runway approach and departure paths. Bird species are ranked to reflect the potential severity of an impact with an aircraft (using bird weight, flocking characteristics, and flight behaviours). These criteria are then employed to chart bird-related safety-risks relative to runway reference points. Each form of land-use is categorized to reflect the degree to which it attracts hazardous bird species. From this information, hazard and risk matrices have been developed and applied to the future airport setting, thereby providing risk-based guidance on appropriate land-uses that range from prohibited to acceptable. The framework has subsequently been applied to an existing Canadian airport, and is currently being adapted for national application. The framework provides a risk-based and science-based approach that offers municipalities and property owner’s flexibility in managing the risks to aviation related to their land use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rare variants are becoming the new candidates in the search for genetic variants that predispose individuals to a phenotype of interest. Their low prevalence in a population requires the development of dedicated detection and analytical methods. A family-based approach could greatly enhance their detection and interpretation because rare variants are nearly family specific. In this report, we test several distinct approaches for analyzing the information provided by rare and common variants and how they can be effectively used to pinpoint putative candidate genes for follow-up studies. The analyses were performed on the mini-exome data set provided by Genetic Analysis Workshop 17. Eight approaches were tested, four using the trait’s heritability estimates and four using QTDT models. These methods had their sensitivity, specificity, and positive and negative predictive values compared in light of the simulation parameters. Our results highlight important limitations of current methods to deal with rare and common variants, all methods presented a reduced specificity and, consequently, prone to false positive associations. Methods analyzing common variants information showed an enhanced sensibility when compared to rare variants methods. Furthermore, our limited knowledge of the use of biological databases for gene annotations, possibly for use as covariates in regression models, imposes a barrier to further research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background Over the last years, a number of researchers have investigated how to improve the reuse of crosscutting concerns. New possibilities have emerged with the advent of aspect-oriented programming, and many frameworks were designed considering the abstractions provided by this new paradigm. We call this type of framework Crosscutting Frameworks (CF), as it usually encapsulates a generic and abstract design of one crosscutting concern. However, most of the proposed CFs employ white-box strategies in their reuse process, requiring two mainly technical skills: (i) knowing syntax details of the programming language employed to build the framework and (ii) being aware of the architectural details of the CF and its internal nomenclature. Also, another problem is that the reuse process can only be initiated as soon as the development process reaches the implementation phase, preventing it from starting earlier. Method In order to solve these problems, we present in this paper a model-based approach for reusing CFs which shields application engineers from technical details, letting him/her concentrate on what the framework really needs from the application under development. To support our approach, two models are proposed: the Reuse Requirements Model (RRM) and the Reuse Model (RM). The former must be used to describe the framework structure and the later is in charge of supporting the reuse process. As soon as the application engineer has filled in the RM, the reuse code can be automatically generated. Results We also present here the result of two comparative experiments using two versions of a Persistence CF: the original one, whose reuse process is based on writing code, and the new one, which is model-based. The first experiment evaluated the productivity during the reuse process, and the second one evaluated the effort of maintaining applications developed with both CF versions. The results show the improvement of 97% in the productivity; however little difference was perceived regarding the effort for maintaining the required application. Conclusion By using the approach herein presented, it was possible to conclude the following: (i) it is possible to automate the instantiation of CFs, and (ii) the productivity of developers are improved as long as they use a model-based instantiation approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the growing interest in social networks, link prediction has received significant attention. Link prediction is mostly based on graph-based features, with some recent approaches focusing on domain semantics. We propose algorithms for link prediction that use a probabilistic ontology to enhance the analysis of the domain and the unavoidable uncertainty in the task (the ontology is specified in the probabilistic description logic crALC). The scalability of the approach is investigated, through a combination of semantic assumptions and graph-based features. We evaluate empirically our proposal, and compare it with standard solutions in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]This paper is a proposal for teaching pragmatics following a corpus-based approach. Corpora have had a high impact on how linguistics is looked at these days. However, teaching linguistics is still traditional in its scope and stays away from a growing tendency of incorporating authentic samples in the theoretical classroom, and so lecturers perpetuate the presentation of the same canonical examples students may find in their textbooks or in other introductory monographs. Our view is that using corpus linguistics, especially corpora freely available in the World Wide Web, will result in a more engaging and fresh look at the course of Pragmatics, while promoting early research in students. This way, they learn the concepts but most importantly how to later identify pragmatic phenomena in real text. Here, we raise our concern with the methodology, presenting clear examples of corpus-based pragmatic activities, and one clear result is the fact that students learn also how to be autonomous in their analysis o f data. In our proposal, we move from more controlled tasks to autonomy. This proposal focuses on students enrolled in the course Pragmática de la Lengua inglesa, currently part of the curriculum in Lenguas Modernas, Universidad de Las Palmas de Gran Canaria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background. One of the phenomena observed in human aging is the progressive increase of a systemic inflammatory state, a condition referred to as “inflammaging”, negatively correlated with longevity. A prominent mediator of inflammation is the transcription factor NF-kB, that acts as key transcriptional regulator of many genes coding for pro-inflammatory cytokines. Many different signaling pathways activated by very diverse stimuli converge on NF-kB, resulting in a regulatory network characterized by high complexity. NF-kB signaling has been proposed to be responsible of inflammaging. Scope of this analysis is to provide a wider, systemic picture of such intricate signaling and interaction network: the NF-kB pathway interactome. Methods. The study has been carried out following a workflow for gathering information from literature as well as from several pathway and protein interactions databases, and for integrating and analyzing existing data and the relative reconstructed representations by using the available computational tools. Strong manual intervention has been necessarily used to integrate data from multiple sources into mathematically analyzable networks. The reconstruction of the NF-kB interactome pursued with this approach provides a starting point for a general view of the architecture and for a deeper analysis and understanding of this complex regulatory system. Results. A “core” and a “wider” NF-kB pathway interactome, consisting of 140 and 3146 proteins respectively, were reconstructed and analyzed through a mathematical, graph-theoretical approach. Among other interesting features, the topological characterization of the interactomes shows that a relevant number of interacting proteins are in turn products of genes that are controlled and regulated in their expression exactly by NF-kB transcription factors. These “feedback loops”, not always well-known, deserve deeper investigation since they may have a role in tuning the response and the output consequent to NF-kB pathway initiation, in regulating the intensity of the response, or its homeostasis and balance in order to make the functioning of such critical system more robust and reliable. This integrated view allows to shed light on the functional structure and on some of the crucial nodes of thet NF-kB transcription factors interactome. Conclusion. Framing structure and dynamics of the NF-kB interactome into a wider, systemic picture would be a significant step toward a better understanding of how NF-kB globally regulates diverse gene programs and phenotypes. This study represents a step towards a more complete and integrated view of the NF-kB signaling system.