921 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.
Resumo:
An approach aimed at enhancing learning by matching individual students' preferred cognitive styles to computer-based instructional (CBI) material is presented. This approach was used in teaching some components of a third-year unit in an electrical engineering course at the Queensland University of Technology. Cognitive style characteristics of perceiving and processing information were considered. The bimodal nature of cognitive styles (analytic/imager, analytic/verbalizer, wholist/imager and wholist/verbalizer) was examined in order to assess the full ramification of cognitive styles on learning. In a quasi-experimental format, students' cognitive styles were analysed by cognitive style analysis (CSA) software. On the basis of the CSA results the system defaulted students to either matched or mismatched CBI material. The consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. Analysing the differences between cognitive styles on individual test tasks also suggests that certain test tasks may better suit certain cognitive styles.
Resumo:
This paper reports two studies designed to investigate the effect on learning outcomes of matching individuals' preferred cognitive styles to computer-based instructional (CBI) material. Study 1 considered the styles individually as Verbalizer, Imager, Wholist and Analytic. Study 2 considered the bi-dimensional nature of cognitive styles in order to assess the full ramification of cognitive styles on learning: Analytic/Imager, Analytic/ Verbalizer, Wholist/Imager and the Wholist/Verbalizer. The mix of images and text, the nature of the text material, use of advance organizers and proximity of information to facilitate meaningful connections between various pieces of information were some of the considerations in the design of the CBI material. In a quasi-experimental format, students' cognitive styles were analysed by Cognitive Style Analysis (CSA) software. On the basis of the CSA result, the system defaulted students to either matched or mismatched CBI material by alternating between the two formats. The instructional material had a learning and a test phase. Learning outcome was tested on recall, labelling, explanation and problem-solving tasks. Comparison of the matched and mismatched instruction did not indicate significant difference between the groups, but the consistently better performance by the matched group suggests potential for further investigations where the limitations cited in this paper are eliminated. The result did indicate a significant difference between the four cognitive styles with the Wholist/Verbalizer group performing better then all other cognitive styles. Analysing the difference between cognitive styles on individual test tasks indicated significant difference on recall, labelling and explanation, suggesting that certain test tasks may suit certain cognitive styles.
Resumo:
The paper provides an assessment of the performance of commercial Real Time Kinematic (RTK) systems over longer than recommended inter-station distances. The experiments were set up to test and analyse solutions from the i-MAX, MAX and VRS systems being operated with three triangle shaped network cells, each having an average inter-station distance of 69km, 118km and 166km. The performance characteristics appraised included initialization success rate, initialization time, RTK position accuracy and availability, ambiguity resolution risk and RTK integrity risk in order to provide a wider perspective of the performance of the testing systems. ----- ----- The results showed that the performances of all network RTK solutions assessed were affected by the increase in the inter-station distances to similar degrees. The MAX solution achieved the highest initialization success rate of 96.6% on average, albeit with a longer initialisation time. Two VRS approaches achieved lower initialization success rate of 80% over the large triangle. In terms of RTK positioning accuracy after successful initialisation, the results indicated a good agreement between the actual error growth in both horizontal and vertical components and the accuracy specified in the RMS and part per million (ppm) values by the manufacturers. ----- ----- Additionally, the VRS approaches performed better than the MAX and i-MAX when being tested under the standard triangle network with a mean inter-station distance of 69km. However as the inter-station distance increases, the network RTK software may fail to generate VRS correction and then may turn to operate in the nearest single-base RTK (or RAW) mode. The position uncertainty reached beyond 2 meters occasionally, showing that the RTK rover software was using an incorrect ambiguity fixed solution to estimate the rover position rather than automatically dropping back to using an ambiguity float solution. Results identified that the risk of incorrectly resolving ambiguities reached 18%, 20%, 13% and 25% for i-MAX, MAX, Leica VRS and Trimble VRS respectively when operating over the large triangle network. Additionally, the Coordinate Quality indicator values given by the Leica GX1230 GG rover receiver tended to be over-optimistic and not functioning well with the identification of incorrectly fixed integer ambiguity solutions. In summary, this independent assessment has identified some problems and failures that can occur in all of the systems tested, especially when being pushed beyond the recommended limits. While such failures are expected, they can offer useful insights into where users should be wary and how manufacturers might improve their products. The results also demonstrate that integrity monitoring of RTK solutions is indeed necessary for precision applications, thus deserving serious attention from researchers and system providers.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
The impact of digital technology within the creative industries has brought with it a range of new opportunities for collaborative, cross-disciplinary and multi-disciplinary practice. Along with these opportunities has come the need to re-evaluate how we as educators approach teaching within this new digital culture. Within the field of animation, there has been a radical shift in the expectations of students, industry and educators as animation has become central to a range of new moving image practices. This paper interrogates the effectiveness of adopting a studio-based collaborative production project as a method for educating students within this new moving-image culture. The project was undertaken, as part of the Creative Industries Transitions to New Professional Environments program at Queensland University of Technology (QUT) in Brisbane Australia. A number of students studying across the Creative Industries Faculty and the Faculty of Science and Technology were invited to participate in the development of a 3D animated short film. The project offered students the opportunity to become actively involved in all stages of the creative process, allowing them to experience informal learning through collaborative professional practice. It is proposed that theoretical principles often associated with andragogy and constructivism can be used to design and deliver programs that address the emerging issues surrounding the teaching of this new moving image culture.
Resumo:
DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two singlestranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.
Resumo:
Archaeal transcription utilizes a complex multisubunit RNA polymerase and the basal transcription factors TBP and TF(II)B, closely resembling its eukaryal counterpart. We have uncovered a tight physical and functional interaction between RNA polymerase and the single-stranded DNA-binding protein SSB in Sulfolobus solfataricus. SSB stimulates transcription from promoters in vitro under TBP-limiting conditions and supports transcription in the absence of TBP. SSB also rescues transcription from repression by reconstituted chromatin. We demonstrate the potential for promoter melting by SSB, suggesting a plausible basis for the stimulation of transcription. This stimulation requires both the single-stranded DNA-binding domain and the acidic C-terminal tail of the SSB. The tail forms a stable interaction with RNA polymerase. These data reveal an unexpected role for single-stranded DNA-binding proteins in transcription in archaea.
Resumo:
In today's technological age, fraud has become more complicated, and increasingly more difficult to detect, especially when it is collusive in nature. Different fraud surveys showed that the median loss from collusive fraud is much greater than fraud perpetrated by a single person. Despite its prevalence and potentially devastating effects, collusion is commonly overlooked as an organizational risk. Internal auditors often fail to proactively consider collusion in their fraud assessment and detection efforts. In this paper, we consider fraud scenarios with collusion. We present six potentially collusive fraudulent behaviors and show their detection process in an ERP system. We have enhanced our fraud detection framework to utilize aggregation of different sources of logs in order to detect communication and have further enhanced it to render it system-agnostic thus achieving portability and making it generally applicable to all ERP systems.
Resumo:
Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair1. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer1. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.
Resumo:
In total, 782 Escherichia coli strains originating from various host sources have been analyzed in this study by using a highly discriminatory single-nucleotide polymorphism (SNP) approach. A set of eight SNPs, with a discrimination value (Simpson's index of diversity [D]) of 0.96, was determined using the Minimum SNPs software, based on sequences of housekeeping genes from the E. coli multilocus sequence typing (MLST) database. Allele-specific real-time PCR was used to screen 114 E. coli isolates from various fecal sources in Southeast Queensland (SEQ). The combined analysis of both the MLST database and SEQ E. coli isolates using eight high-D SNPs resolved the isolates into 74 SNP profiles. The data obtained suggest that SNP typing is a promising approach for the discrimination of host-specific groups and allows for the identification of human-specific E. coli in environmental samples. However, a more diverse E. coli collection is required to determine animal- and environment-specific E. coli SNP profiles due to the abundance of human E. coli strains (56%) in the MLST database.
Resumo:
The emergence of ePortfolios is relatively recent in the university sector as a way to engage students in their learning and assessment, and to produce records of their accomplishments. An ePortfolio is an online tool that students can utilise to record, catalogue, retrieve and present reflections and artefacts that support and demonstrate the development of graduate students’ capabilities and professional standards across university courses. The ePortfolio is therefore considered as both process and product. Although ePortfolios show promise as a useful tool and their uptake has grown, they are not yet a mainstream higher education technology. To date, the emphasis has been on investigating their potential to support the multiple purposes of learning, assessment and employability, but less is known about whether and how students engage with ePortfolios in the university setting. This thesis investigates student engagement with an ePortfolio in one university. As the educational designer for the ePortfolio project at the University, I was uniquely positioned as a researching professional to undertake an inquiry into whether students were engaging with the ePortfolio. The participants in this study were a cohort (defined by enrolment in a unit of study) of second and third year education students (n=105) enrolled in a four year Bachelor of Education degree. The students were introduced to the ePortfolio in an introductory lecture and a hands-on workshop in a computer laboratory. They were subsequently required to complete a compulsory assessment task – a critical reflection - using the ePortfolio. Following that, engagement with the ePortfolio was voluntary. A single case study approach arising from an interpretivist paradigm directed the methodological approach and research design for this study. The study investigated the participants’ own accounts of their experiences with the ePortfolio, including how and when they engaged with the ePortfolio and the factors that impacted on their engagement. Data collection methods consisted of an attitude survey, student interviews, document collection, a researcher reflective journal and researcher observations. The findings of the study show that, while the students were encouraged to use the ePortfolio as a learning and employability tool, most students ultimately chose to disengage after completing the assessment task. Only six of the forty-five students (13%) who completed the research survey had used the ePortfolio in a sustained manner. The data obtained from the students during this research has provided insight into reasons why they disengaged from the ePortfolio. The findings add to the understandings and descriptions of student engagement with technology, and more broadly, advance the understanding of ePortfolios. These findings also contribute to the interdisciplinary field of technology implementation. There are three key outcomes from this study, a model of student engagement with technology, a set of criteria for the design of an ePortfolio, and a set of recommendations for effective practice for those implementing ePortfolios. The first, the Model of Student Engagement with Technology (MSET) (Version 2) explored student engagement with technology by highlighting key engagement decision points for students The model was initially conceptualised by building on work of previous research (Version 1), however, following data analysis a new model emerged, MSET (Version 2). The engagement decision points were identified as: • Prior Knowledge and Experience, leading to imagined usefulness and imagined ease of use; • Initial Supported Engagement, leading to supported experience of usefulness and supported ease of use; • Initial Independent Engagement, leading to actual experience of independent usefulness and actual ease of use; and • Ongoing Independent Engagement, leading to ongoing experience of usefulness and ongoing ease of use. The Model of Student Engagement with Technology (MSET) goes beyond numerical figures of usage to demonstrate student engagement with an ePortfolio. The explanatory power of the model is based on the identification of the types of decisions that students make and when they make them during the engagement process. This model presents a greater depth of understanding student engagement than was previously available and has implications for the direction and timing of future implementation, and academic and student development activities. The second key outcome from this study is a set of criteria for the re-conceptualisation of the University ePortfolio. The knowledge gained from this research has resulted in a new set of design criteria that focus on the student actions of writing reflections and adding artefacts. The process of using the ePortfolio is reconceptualised in terms of privileging student learning over administrative compliance. The focus of the ePortfolio is that the writing of critical reflections is the key function, not the selection of capabilities. The third key outcome from this research consists of five recommendations for university practice that have arisen from this study. They are that, sustainable implementation is more often achieved through small steps building on one another; that a clear definition of the purpose of an ePortfolio is crucial for students and staff; that ePortfolio pedagogy should be the driving force not the technology; that the merit of the ePortfolio is fostered in students and staff; and finally, that supporting delayed task performance is crucial. Students do not adopt an ePortfolio just because it is provided. While students must accept responsibility for their own engagement with the ePortfolio, the institution has to accept responsibility for providing the environment, and technical and pedagogical support to foster engagement. Ultimately, an ePortfolio should be considered as a joint venture between student and institution where strong returns on investment can be realised by both. It is acknowledged that the current implementation strategies for the ePortfolio are just the beginning of a much longer process. The real rewards for students, academics and the university lie in the future.
Resumo:
The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.
Resumo:
When managers of entrepreneurial companies typically talk about strategies, they first consider what products to make and secondly where to locate the business. The entrepreneurial companies locate in rural areas because of a wish to maintain a certain lifestyle, or because they can combine a resource available there with certain knowledge or interest that they have (Getz and Nilsson, 2004). In addition, many managers of entrepreneurial companies are confident in locating in a rural area, because there often is economic and social structure supportive of local corporate governance. The most central part of corporate governance is the board of directors. In an entrepreneurial company in a rural area, such members of boards are most likely to be individuals in dominant positions influential in the local economy.
Resumo:
As computer applications become more available—both technically and economically—construction project managers are increasingly able to access advanced computer tools capable of transforming the role that project managers have typically performed. Competence at using these tools requires a dual commitment in training—from the individual and the firm. Improving the computer skills of project managers can provide construction firms with a competitive advantage to differentiate from others in an increasingly competitive international market. Yet, few published studies have quantified what existing level of competence construction project managers have. Identification of project managers’ existing computer application skills is a necessary first step to developing more directed training to better capture the benefits of computer applications. This paper discusses the yet to be released results of a series of surveys undertaken in Malaysia, Singapore, Indonesia, Australia and the United States through QUT’s School of Construction Management and Property and the M.E. Rinker, Sr. School of Building Construction at the University of Florida. This international survey reviews the use and reported competence in using a series of commercially-available computer applications by construction project managers. The five different country locations of the survey allow cross-national comparisons to be made between project managers undertaking continuing professional development programs. The results highlight a shortfall in the ability of construction project managers to capture potential benefits provided by advanced computer applications and provide directions for targeted industry training programs. This international survey also provides a unique insight to the cross-national usage of advanced computer applications and forms an important step in this ongoing joint review of technology and the construction project manager.