970 resultados para Differential equations, Parabolic
Resumo:
A particle filter method is presented for the discrete-time filtering problem with nonlinear ItA ` stochastic ordinary differential equations (SODE) with additive noise supposed to be analytically integrable as a function of the underlying vector-Wiener process and time. The Diffusion Kernel Filter is arrived at by a parametrization of small noise-driven state fluctuations within branches of prediction and a local use of this parametrization in the Bootstrap Filter. The method applies for small noise and short prediction steps. With explicit numerical integrators, the operations count in the Diffusion Kernel Filter is shown to be smaller than in the Bootstrap Filter whenever the initial state for the prediction step has sufficiently few moments. The established parametrization is a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular how the stability of a deterministic dynamics is modeled by noise on short times and how the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE problem. From it, a novel definition of prediction may be proposed that coincides with the deterministic path within the branch of prediction whose information entropy at the end of the prediction step is closest to the average information entropy over all branches. Tests are made with the Lorenz-63 equations, showing good results both for the filter and the definition of prediction.
Resumo:
In this paper we consider the strongly damped wave equation with time-dependent terms u(tt) - Delta u - gamma(t)Delta u(t) + beta(epsilon)(t)u(t) = f(u), in a bounded domain Omega subset of R(n), under some restrictions on beta(epsilon)(t), gamma(t) and growth restrictions on the nonlinear term f. The function beta(epsilon)(t) depends on a parameter epsilon, beta(epsilon)(t) -> 0. We will prove, under suitable assumptions, local and global well-posedness (using the uniform sectorial operators theory), the existence and regularity of pullback attractors {A(epsilon)(t) : t is an element of R}, uniform bounds for these pullback attractors, characterization of these pullback attractors and their upper and lower semicontinuity at epsilon = 0. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Using a combination of several methods, such as variational methods. the sub and supersolutions method, comparison principles and a priori estimates. we study existence, multiplicity, and the behavior with respect to lambda of positive solutions of p-Laplace equations of the form -Delta(p)u = lambda h(x, u), where the nonlinear term has p-superlinear growth at infinity, is nonnegative, and satisfies h(x, a(x)) = 0 for a suitable positive function a. In order to manage the asymptotic behavior of the solutions we extend a result due to Redheffer and we establish a new Liouville-type theorem for the p-Laplacian operator, where the nonlinearity involved is superlinear, nonnegative, and has positive zeros. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We study the Fucik spectrum of the Laplacian on a two-dimensional torus T(2). Exploiting the invariance properties of the domain T(2) with respect to translations we obtain a good description of large parts of the spectrum. In particular, for each eigenvalue of the Laplacian we will find an explicit global curve in the Fucik spectrum which passes through this eigenvalue; these curves are ordered, and we will show that their asymptotic limits are positive. On the other hand, using a topological index based on the mentioned group invariance, we will obtain a variational characterization of global curves in the Fucik spectrum; also these curves emanate from the eigenvalues of the Laplacian, and we will show that they tend asymptotically to zero. Thus, we infer that the variational and the explicit curves cannot coincide globally, and that in fact many curve crossings must occur. We will give a bifurcation result which partially explains these phenomena. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).
Resumo:
We consider real analytic involutive structures V, of co-rank one, defined on a real analytic paracompact orientable manifold M. To each such structure we associate certain connected subsets of M which we call the level sets of V. We prove that analytic regularity propagates along them. With a further assumption on the level sets of V we characterize the global analytic hypoellipticity of a differential operator naturally associated to V. As an application we study a case of tube structures.
Resumo:
In this paper, we introduce a method to conclude about the existence of secondary bifurcations or isolas of steady state solutions for parameter dependent nonlinear partial differential equations. The technique combines the Global Bifurcation Theorem, knowledge about the non-existence of nontrivial steady state solutions at the zero parameter value and explicit information about the coexistence of multiple nontrivial steady states at a positive parameter value. We apply the method to the two-dimensional Swift-Hohenberg equation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Hartman-Grobman Theorem of linearization is extended to families of dynamical systems in a Banach space X, depending continuously on parameters. We prove that the conjugacy also changes continuously. The cases of nonlinear maps and flows are considered, and both in global and local versions, but global in the parameters. To use a special version of the Banach-Caccioppoli Theorem we introduce equivalent norms on X depending on the parameters. The functional setting is suitable for applications to some nonlinear evolution partial differential equations like the nonlinear beam equation.
Resumo:
A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
We consider semidynamical systems with impulse effects at variable times and we discuss some properties of the limit sets of orbits of these systems such as invariancy, compactness and connectedness. As a consequence we obtain a version of the Poincare-Bendixson Theorem for impulsive semidynamical systems. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.
Resumo:
Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density perturbation. We solve them numerically for linear and spherical perturbations and follow the propagation of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by ""radiation"". Depending on the equation of state a strong damping may occur. We consider also the evolution of perturbations in a medium without dispersive effects. In this case we observe the formation and breaking of shock waves. We study all these equations also for matter at finite temperature. Our results may be relevant for the analysis of RHIC data. They suggest that the shock waves formed in the quark gluon plasma phase may survive and propagate in the hadronic phase. (C) 2009 Elseiver. B.V. All rights reserved.
Resumo:
The analysis of the electrical impedance of an electrolytic cell in the shape of a slab is performed. We have solved, numerically, the differential equations governing the phenomenon of the redistribution of the ions in the presence of an external electric field, and compared the results with the ones obtained by solving the linear approximation of these equations. The control parameters in our study are the amplitude and the frequency of the applied voltage, assumed a simple harmonic function of the time. We show that for the large amplitudes of the applied voltage, the actual current is no longer harmonic at low frequencies. From this result it follows that the concept of electrical impedance of a cell is a useful quantity only in the case where the linear approximation of the fundamental equations of problem work well.