995 resultados para DAMAGE THRESHOLD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new model for analyzing the laser-induced damage process is provided. In many damage pits, the melted residue can been found. This is evidence of the phase change of materials. Therefore the phase change of materials is incorporated into the mechanical damage mechanism of films. Three sequential stages are discussed: no phase change, liquid phase change, and gas phase change. To study the damage mechanism and process, two kinds of stress have been considered: thermal stress and deformation stress. The former is caused by the temperature gradient and the latter is caused by high-pressure drive deformation. The theory described can determine the size of the damage pit. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

探讨了HfO2薄膜中负离子元素杂质破坏模型,并得出薄膜中的杂质主要来源于镀膜材料。用电子束蒸发方法沉积两种不同Cl元素古量的HfO2薄膜,测定薄膜弱吸收和损伤阈值来验证负离子元素破坏模型。结果表明,随着Cl元素含量的增加薄膜的弱吸收增加损伤阈值减小。这主要是因为负离子元素在蒸发过程中形成挥发性的气源中心而产生缺陷,缺陷在激光辐照过程中又形成吸收中心.因此负离子元素的存在将加速薄膜的破坏。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption of host and the temperature-dependence of absorption coefficient have been considered in evaluating temperatures distribution in films, when laser pulse irradiates on films. Absorption of dielectric materials experience three stages with the increase of temperature: multi-photon absorption; single photon absorption; metallic absorption. These different absorption mechanisms correspond to different band gap energies of materials, which will decrease when the temperature of materials increases. evaluating results indicate that absorption of host increases rapidly when the laser pulse will be over. If absorption of host and the temperature-dependence of absorption are considered, the material temperatures in films will be increased by a factor of four.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HfO2 single layers, 800 run high-reflective (HR) coating, and 1064 ran HR coating were prepared by electron-beam evaporation. The laser-induced damage thresholds (LIDTs) and damage morphologies of these samples were investigated with single-pulse femtosecond and nanosecond lasers. It is found that the LIDT of the HfO2 single layer is higher than the HfO2-SiO2 HR coating in the femtosecond regime, while the situation is opposite in the nanosecond regime. Different damage mechanisms are applied to study this phenomenon. Damage morphologies of all samples due to different laser irradiations are displayed. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of plasma formation induced by UV nanosecond pulselaser interaction with SiO2 thin film based on nanoabsorber is proposed. The model considers the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO2 thin film, foreign inclusion which absorbs a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and consequently, the transformation of the initial transparent matrix into an absorptive medium around the inclusion, thus facilitates optical damage. Qualitative comparison with experiments is also provided. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ta2O5 films are prepared on Si, BK7, fused silica, antireflection (AR) and high reflector (HR) substrates by electron beam evaporation method, respectively. Both the optical property and laser induced damage thresholds (LIDTs) at 1064 nm of Ta2O5 films on different substrates are investigated before and after annealing at 673 K for 12h. It is shown that annealing increases the refractive index and decreases the extinction index, and improves the O/Ta ratio of the Ta2O5 films from 2.42 to 2.50. Moreover, the results show that the LIDTs of the Ta2O5 films are mainly correlated with three parameters: substrate property, substoichiometry defect in the films and impurity defect at the interface between the substrate and the films. Details of the laser induced damage models in different cases are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a technique to improve the ability of optical films to resist laser-induced damage (ARLID), laser preconditioning has been investigated broadly. In this paper, the laser preconditioning effect has been analyzed based on the defect-initialized damage mechanism that the author had put forward previously. Theoretical results show that an energy density scope (PEDS) exists in which the preconditioning laser can effectively improve the ARLID of optical films. In addition, when the energy density of the testing laser pulse is altered, the boundary of PEDS will change accordingly. Experimental results have verified these theoretical assumptions. PEDS will also become wider if the critical energy density of the preconditioning laser that can induce films' micro-damage increases, or the critical energy density of the preconditioning laser that can cause laser annealing decreases. In these cases, it is relatively easy to improve the ARLID of optical films. Results of the current work show great significance in enhancing the ARLID of optical films through the laser preconditioning technique. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.