911 resultados para Curvature parabola
Resumo:
The solubilization of lipid bilayers by detergents was studied with optical microscopy of giant unilamellar vesicles (GUVs) composed of palmitoyl oleoyl phoshatidylcholine (POPC). A solution of the detergents Triton X-100 (TX-100) and sodium dodecyl sulfate (SDS) was injected with a micropipette close to single GUVs. The solubilization process was observed with phase contrast and fluorescence microscopy and found to be dependent on the detergent nature. In the presence of TX-100, GUVs initially showed an increase in their surface area, due to insertion of TX-100 with rapid equilibration between the two leaflets of the bilayer. Then, above a solubility threshold, several holes opened, rendering the bilayer a lace fabric appearance, and the bilayer gradually vanished. On the other hand, injection of SDS caused initially an increase in the membrane spontaneous curvature, which is mainly associated with incorporation of SDS in the outer layer only. This created a stress in the membrane, which caused either opening of transient macropores with substantial decrease in vesicle size or complete vesicle bursting. In another experimental setup, the extent of solubilization/destruction of a collection of GUVs was measured as a function of either TX-100 or SDS concentration.
Resumo:
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, tipper limits on the flux of photons of 3.8 x 10(-3), 2.5 x 10(-3), and 2.2 x 10(-3) km(-2) sr(-1) yr(-1) above 10(19) eV, 2 x 10(19) eV, and 4 x 10(19) eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Here we present a parametrized tight-binding (TB) model to calculate the band structure of single-wall carbon nanotubes (SWNTs). On the basis of ab initio calculations we fit the band structure of nanotubes of different radii with results obtained with an orthogonal TB model to third neighbors, which includes the effects of orbital hybridization by means of a reduced set of parameters. The functional form for the dependence of these parameters on the radius of the tubes can be used to interpolate appropriate TB parameters for different SWNTs and to study the effects of curvature on their electronic properties. Additionally, we have shown that the model gives an appropriate description of the optical spectra of SWNTs, which can be useful for a proper assignation of SWNTs` specific chirality from optical absorption experiments.
Resumo:
This paper investigates the predictions of an inflationary phase starting from a homogeneous and anisotropic universe of the Bianchi I type. After discussing the evolution of the background spacetime, focusing on the number of e-folds and the isotropization, we solve the perturbation equations and predict the power spectra of the curvature perturbations and gravity waves at the end of inflation. The main features of the early anisotropic phase is (1) a dependence of the spectra on the direction of the modes, (2) a coupling between curvature perturbations and gravity waves and (3) the fact that the two gravity wave polarizations do not share the same spectrum on large scales. All these effects are significant only on large scales and die out on small scales where isotropy is recovered. They depend on a characteristic scale that can, but a priori must not, be tuned to some observable scale. To fix the initial conditions, we propose a procedure that generalizes the one standardly used in inflation but that takes into account the fact that the WKB regime is violated at early times when the shear dominates. We stress that there exist modes that do not satisfy the WKB condition during the shear-dominated regime and for which the amplitude at the end of inflation depends on unknown initial conditions. On such scales, inflation loses its predictability. This study paves the way for the determination of the cosmological signature of a primordial shear, whatever the Bianchi I spacetime. It thus stresses the importance of the WKB regime to draw inflationary predictions and demonstrates that, when the number of e-folds is large enough, the predictions converge toward those of inflation in a Friedmann-Lemaitre spacetime but that they are less robust in the case of an inflationary era with a small number of e-folds.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background Along the internal carotid artery (ICA), atherosclerotic plaques are often located in its cavernous sinus (parasellar) segments (pICA). Studies indicate that the incidence of pre-atherosclerotic lesions is linked with the complexity of the pICA; however, the pICA shape was never objectively characterized. Our study aims at providing objective mathematical characterizations of the pICA shape. Methods and results Three-dimensional (3D) computer models, reconstructed from contrast enhanced computed tomography (CT) data of 30 randomly selected patients (60 pICAs) were analyzed with modern visualization software and new mathematical algorithms. As objective measures for the pICA shape complexity, we provide calculations of curvature energy, torsion energy, and total complexity of 3D skeletons of the pICA lumen. We further measured the posterior knee of the so-called ""carotid siphon"" with a virtual goniometer and performed correlations between the objective mathematical calculations and the subjective angle measurements. Conclusions Firstly, our study provides mathematical characterizations of the pICA shape, which can serve as objective reference data for analyzing connections between pICA shape complexity and vascular diseases. Secondly, we provide an objective method for creating Such data. Thirdly, we evaluate the usefulness of subjective goniometric measurements of the angle of the posterior knee of the carotid siphon.
Resumo:
Inside the `cavernous sinus` or `parasellar region` the human internal carotid artery takes the shape of a siphon that is twisted and torqued in three dimensions and surrounded by a network of veins. The parasellar section of the internal carotid artery is of broad biological and medical interest, as its peculiar shape is associated with temperature regulation in the brain and correlated with the occurrence of vascular pathologies. The present study aims to provide anatomical descriptions and objective mathematical characterizations of the shape of the parasellar section of the internal carotid artery in human infants and its modifications during ontogeny. Three-dimensional (3D) computer models of the parasellar section of the internal carotid artery of infants were generated with a state-of-the-art 3D reconstruction method and analysed using both traditional morphometric methods and novel mathematical algorithms. We show that four constant, demarcated bends can be described along the infant parasellar section of the internal carotid artery, and we provide measurements of their angles. We further provide calculations of the curvature and torsion energy, and the total complexity of the 3D skeleton of the parasellar section of the internal carotid artery, and compare the complexity of this in infants and adults. Finally, we examine the relationship between shape parameters of the parasellar section of the internal carotid artery in infants, and the occurrence of intima cushions, and evaluate the reliability of subjective angle measurements for characterizing the complexity of the parasellar section of the internal carotid artery in infants. The results can serve as objective reference data for comparative studies and for medical imaging diagnostics. They also form the basis for a new hypothesis that explains the mechanisms responsible for the ontogenetic transformation in the shape of the parasellar section of the internal carotid artery.
Resumo:
In this paper we present our preliminary results which suggest that some field theory models are `almost` integrable; i.e. they possess a large number of `almost` conserved quantities. First we demonstrate this, in some detail, on a class of models which generalise sine-Gordon model in (1+1) dimensions. Then, we point out that many field configurations of these models look like those of the integrable systems and others are very close to being integrable. Finally we attempt to quantify these claims looking in particular, both analytically and numerically, at some long lived field configurations which resemble breathers.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Surface roughness is an important geomorphological variable which has been used in the Earth and planetary sciences to infer material properties, current/past processes, and the time elapsed since formation. No single definition exists; however, within the context of geomorphometry, we use surface roughness as an expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter`s behavior at different spatial scales and data-set resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenization of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography highlighted local features and did not detect regional relief. Standard deviation of elevation correctly identified breaks of slope and was good at detecting regional relief. Standard deviation of slope (SD(slope)) also correctly identified smooth sloping areas and breaks of slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks of slope, although not as strongly as SD(slope), and it is sensitive to noise and spurious data. In general, SD(slope) offered good performance at a variety of scales, while the simplicity of calculation is perhaps its single greatest benefit.
Resumo:
Local influence diagnostics based on estimating equations as the role of a gradient vector derived from any fit function are developed for repeated measures regression analysis. Our proposal generalizes tools used in other studies (Cook, 1986: Cadigan and Farrell, 2002), considering herein local influence diagnostics for a statistical model where estimation involves an estimating equation in which all observations are not necessarily independent of each other. Moreover, the measures of local influence are illustrated with some simulated data sets to assess influential observations. Applications using real data are presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.