870 resultados para Contrast-to-noise ratio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. In Old World primates, the retina receives input from histaminergic neurons in the posterior hypothalamus. They are a subset of the neurons that project throughout the central nervous system and fire maximally during the day. The contribution of these neurons to vision, was examined by applying histamine to a dark-adapted, superfused baboon eye cup preparation while making extracellular recordings from peripheral retinal ganglion cells. METHODS. The stimuli were 5-ms, 560-nm, weak, full-field flashes in the low scotopic range. Ganglion cells with sustained and transient ON responses and two cell types with OFF responses were distinguished; their responses were recorded with a 16-channel microelectrode array. RESULTS. Low micromolar doses of histamine decreased the rate of maintained firing and the light sensitivity of ON ganglion cells. Both sustained and transient ON cells responded similarly to histamine. There were no statistically significant effects of histamine in a more limited study of OFF ganglion cells. The response latencies of ON cells were approximately 5 ms slower, on average, when histamine was present. Histamine also reduced the signal-to-noise ratio of ON cells, particularly in those cells with a histamine-induced increase in maintained activity. CONCLUSIONS. A major action of histamine released from retinopetal axons under dark-adapted conditions, when rod signals dominate the response, is to reduce the sensitivity of ON ganglion cells to light flashes. These findings may relate to reports that humans are less sensitive to light stimuli in the scotopic range during the day, when histamine release in the retina is expected to be at its maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To determine the feasibility of evaluating surgically induced hepatocyte damage using gadoxetate disodium (Gd-EOB-DTPA) as a marker for viable hepatocytes at magnetic resonance imaging (MRI) after liver resection. MATERIAL AND METHODS: Fifteen patients were prospectively enrolled in this institutional review board-approved study prior to elective liver resection after informed consent. Three Tesla MRI was performed 3-7 days after surgery. Three-dimensional (3D) T1-weighted (W) volumetric interpolated breath-hold gradient echo (VIBE) sequences covering the liver were acquired before and 20 min after Gd-EOB-DTPA administration. The signal-to-noise ratio (SNR) was used to compare the uptake of Gd-EOB-DTPA in healthy liver tissue and in liver tissue adjacent to the resection border applying paired Student's t-test. Correlations with potential influencing factors (blood loss, duration of intervention, age, pre-existing liver diseases, postoperative change of resection surface) were calculated using Pearson's correlation coefficient. RESULTS: Before Gd-EOB-DTPA administration the SNR did not differ significantly (p = 0.052) between healthy liver tissue adjacent to untouched liver borders [59.55 ± 25.46 (SD)] and the liver tissue compartment close to the resection surface (63.31 ± 27.24). During the hepatocyte-specific phase, the surgical site showed a significantly (p = 0.04) lower SNR (69.44 ± 24.23) compared to the healthy site (78.45 ± 27.71). Dynamic analyses revealed a significantly lower increase (p = 0.008) in signal intensity in the healthy tissue compared to the resection border compartment. CONCLUSION: EOB-DTPA-enhanced MRI may have the potential to be an effective non-invasive tool for detecting hepatocyte damage after liver resection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three methods for distortion-free enhancement of electro-optic sampling measurements of terahertz signals are tested. In the first part of this two-paper series [J. Opt. Soc. Am B 31, 904–910 (2014)], the theoretical framework for describing the signal enhancement was presented and discussed. As the applied optical bias is decreased, individual signal traces become enhanced but distorted. Here we experimentally show that nonlinear signal components that distort the terahertz electric field measurement can be removed by subtracting traces recorded with opposite optical bias values. In all three methods tested, we observe up to an order of magnitude increase in distortion-free signal enhancement, in agreement with the theory, making possible measurements of small terahertz-induced transient birefringence signals with increased signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to validate oxygen-sensitive 3He-MRI in noninvasive determination of the regional, two- and three-dimensional distribution of oxygen partial pressure. In a gas-filled elastic silicon ventilation bag used as a lung phantom, oxygen sensitive two- and three-dimensional 3He-MRI measurements were performed at different oxygen concentrations which had been equilibrated in a range of normal and pathologic values. The oxygen partial pressure distribution was determined from 3He-MRI using newly developed software allowing for mapping of oxygen partial pressure. The reference bulk oxygen partial pressure inside the phantom was measured by conventional respiratory gas analysis. In two-dimensional measurements, image-based and gas-analysis results correlated with r=0.98; in three-dimensional measurements the between-methods correlation coefficient was r=0.89. The signal-to-noise ratio of three-dimensional measurements was about half of that of two-dimensional measurements and became critical (below 3) in some data sets. Oxygen-sensitive 3He-MRI allows for noninvasive determination of the two- and three-dimensional distribution of oxygen partial pressure in gas-filled airspaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein screening/detection is an essential tool in many laboratories. Owing to the relatively large time investments that are required by standard protocols, the development of methods with higher throughput while maintaining an at least comparable signal-to-noise ratio is highly beneficial in many research areas. This chapter describes how cold microwave technology can be used to enhance the rate of molecular interactions and provides protocols for dot blots, Western blots, and ELISA procedures permitting a completion of all incubation steps (blocking and antibody steps) within 24-45 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI. MATERIALS AND METHODS After approval by the local ethics committee, eight healthy female volunteers (age, 38.9±13.1 years) underwent breast MRI at 3T. Conventional as well as two-fold (2× SMS) and three-fold (3× SMS) slice-accelerated rs-EPI sequences were acquired at b-values of 50 and 800s/mm(2). Two independent readers analyzed the apparent diffusion coefficient (ADC) in fibroglandular breast parenchyma. The signal-to-noise ratio (SNR) was estimated based on the subtraction method. ADC and SNR were compared between sequences by using the Friedman test. RESULTS The acquisition time was 4:21min for conventional rs-EPI, 2:35min for 2× SMS rs-EPI and 1:44min for 3× SMS rs-EPI. ADC values were similar in all sequences (mean values 1.62×10(-3)mm(2)/s, p=0.99). Mean SNR was 27.7-29.6, and no significant differences were found among the sequences (p=0.83). CONCLUSION SMS rs-EPI yields similar ADC values and SNR compared to conventional rs-EPI at markedly reduced scan time. Thus, SMS excitation increases the clinical applicability of rs-EPI for DWI of the breast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009, with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10(-3) to 10(-2) of the peak value, previously mostly left out from the analysis, may provide important information about the details of the distribution function of interstellar He gas in front of the heliosphere. In particular, these observations may inform us about possible departures of the parent interstellar He population from equilibrium. We compare the expected distribution of the signal for the canonical assumption of a single Maxwell-Boltzmann population with the distributions for a superposition of the Maxwell-Boltzmann primary population and the recently discovered Warm Breeze, and for a single primary population given by a kappa function. We identify the regions on the sky where the differences between those cases are expected to be the most visible against the background. We discuss the diagnostic potential of the fall peak of the interstellar signal, reduced by a factor of 50 due to the Compton-Getting effect but still above the detection limit of IBEX. We point out the strong energy dependence of the fall signal and suggest that searching for this signal in the data could bring an independent assessment of the low-energy measurement threshold of the IBEX-Lo sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of extraterrestrial life is an ongoing goal in space exploration, and there is a need for advanced instruments and methods for the detection of signatures of life based on chemical and isotopic composition. Here, we present the first investigation of chemical composition of putative microfossils in natural samples using a miniature laser ablation/ionization time-of-flight mass spectrometer (LMS). The studies were conducted with high lateral (similar to 15 mu m) and vertical (similar to 20-200 nm) resolution. The primary aim of the study was to investigate the instrument performance on micrometer-sized samples both in terms of isotope abundance and element composition. The following objectives had to be achieved: (1) Consider the detection and calculation of single stable isotope ratios in natural rock samples with techniques compatible with their employment of space instrumentation for biomarker detection in future planetary missions. (2) Achieve a highly accurate chemical compositional map of rock samples with embedded structures at the micrometer scale in which the rock matrix is easily distinguished from the micrometer structures. Our results indicate that chemical mapping of strongly heterogeneous rock samples can be obtained with a high accuracy, whereas the requirements for isotope ratios need to be improved to reach sufficiently large signal-to-noise ratio (SNR). Key Words: Biogenicity-Biomarkers-Biosignatures-Filaments-Fossilization. Astrobiology 15, 669-682.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycogen is a major substrate in energy metabolism and particularly important to prevent hypoglycemia in pathologies of glucose homeostasis such as type 1 diabetes mellitus (T1DM). (13) C-MRS is increasingly used to determine glycogen in skeletal muscle and liver non-invasively; however, the low signal-to-noise ratio leads to long acquisition times, particularly when glycogen levels are determined before and after interventions. In order to ease the requirements for the subjects and to avoid systematic effects of the lengthy examination, we evaluated if a standardized preparation period would allow us to shift the baseline (pre-intervention) experiments to a preceding day. Based on natural abundance (13) C-MRS on a clinical 3 T MR system the present study investigated the test-retest reliability of glycogen measurements in patients with T1DM and matched controls (n = 10 each group) in quadriceps muscle and liver. Prior to the MR examination, participants followed a standardized diet and avoided strenuous exercise for two days. The average coefficient of variation (CV) of myocellular glycogen levels was 9.7% in patients with T1DM compared with 6.6% in controls after a 2 week period, while hepatic glycogen variability was 13.3% in patients with T1DM and 14.6% in controls. For comparison, a single-session test-retest variability in four healthy volunteers resulted in 9.5% for skeletal muscle and 14.3% for liver. Glycogen levels in muscle and liver were not statistically different between test and retest, except for hepatic glycogen, which decreased in T1DM patients in the retest examination, but without an increase of the group distribution. Since the CVs of glycogen levels determined in a "single session" versus "within weeks" are comparable, we conclude that the major source of uncertainty is the methodological error and that physiological variations can be minimized by a pre-study standardization. For hepatic glycogen examinations, familiarization sessions (MR and potentially strenuous interventions) are recommended. Copyright © 2016 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution, small-bore PET systems suffer from a tradeoff between system sensitivity, and image quality degradation. In these systems long crystals allow mispositioning of the line of response due to parallax error and this mispositioning causes resolution blurring, but long crystals are necessary for high system sensitivity. One means to allow long crystals without introducing parallax errors is to determine the depth of interaction (DOI) of the gamma ray interaction within the detector module. While DOI has been investigated previously, newly available solid state photomultipliers (SSPMs) well-suited to PET applications and allow new modules for investigation. Depth of interaction in full modules is a relatively new field, and so even if high performance DOI capable modules were available, the appropriate means to characterize and calibrate the modules are not. This work presents an investigation of DOI capable arrays and techniques for characterizing and calibrating those modules. The methods introduced here accurately and reliably characterize and calibrate energy, timing, and event interaction positioning. Additionally presented is a characterization of the spatial resolution of DOI capable modules and a measurement of DOI effects for different angles between detector modules. These arrays have been built into a prototype PET system that delivers better than 2.0 mm resolution with a single-sided-stopping-power in excess of 95% for 511 keV g's. The noise properties of SSPMs scale with the active area of the detector face, and so the best signal-to-noise ratio is possible with parallel readout of each SSPM photodetector pixel rather than multiplexing signals together. This work additionally investigates several algorithms for improving timing performance using timing information from multiple SSPM pixels when light is distributed among several photodetectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 199 a high-resolution (~1-2 cm/k.y.) biogenic sediment record from the late Paleocene to the early Miocene was recovered, containing an uninterrupted set of geomagnetic chrons as well as a detailed record of calcareous and siliceous biostratigraphic datum events. Shipboard lithologic proxy measurements and shore-based determinations of CaCO3 revealed regular cycles that can be attributed to climatic forcing. Discovering drill sites with well defined magneto- and biostratigraphic records that also show clear lithologic cycles is rare and valuable and creates the opportunity to develop a detailed stratigraphic intersite correlation, providing the basis to study paleoceanographic processes and mass accumulation rates at high resolution. Here we present extensive postcruise work that extends the shipboard composite depth stratigraphy by providing a high-resolution revised meters composite depth (rmcd) scale to compensate for depth distortion within individual cores. The depth-aligned data were then used to generate stacked records of lithologic proxy measurements. Making use of the increased signal-to-noise ratio in the stacked records, we then proceeded to generate a detailed site-to-site correlation between Sites 1218 and 1219 in order to decrease the depth uncertainty for magneto- and biostratigraphic datums. Stacked lithologic proxy records in combination with discrete measurements of CaCO3 were then exploited to calculate high-resolution carbonate concentration curves by regression of the multisensor track data with discrete measurements. By matching correlative features between the cores and wireline logging data, we also rescaled our core rmcd back to in situ depths. Our study identifies lithology-dependent core expansion due to unloading as the mechanism of varying stratigraphic thicknesses between cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beryllium 10 concentrations (10Becon) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (~solar cycles 22 and 23). Calibrating the 10Becon time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. 10Becon in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r=0.5, p=0.05, n=16; JC: r=0.46, p=0.03, n=22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Becon time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric 10Be production signal (10Be atmosphere). To increase the signal to noise ratio a 10Be composite record (10Be composite) was calculated from the TSK and JC 10Be atmosphere time-series. 10Becomposite is significantly correlated to variations in the neutron monitor record (r=0.49, p=0.01, n=27) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of 10Be in varved lake sediments for solar activity reconstruction.