804 resultados para Computational learning theory
Resumo:
Traditional heuristic approaches to the Examination Timetabling Problem normally utilize a stochastic method during Optimization for the selection of the next examination to be considered for timetabling within the neighbourhood search process. This paper presents a technique whereby the stochastic method has been augmented with information from a weighted list gathered during the initial adaptive construction phase, with the purpose of intelligently directing examination selection. In addition, a Reinforcement Learning technique has been adapted to identify the most effective portions of the weighted list in terms of facilitating the greatest potential for overall solution improvement. The technique is tested against the 2007 International Timetabling Competition datasets with solutions generated within a time frame specified by the competition organizers. The results generated are better than those of the competition winner in seven of the twelve examinations, while being competitive for the remaining five examinations. This paper also shows experimentally how using reinforcement learning has improved upon our previous technique.
Resumo:
Computer game technology is poised to make a significant impact on the way our youngsters will learn. Our youngsters are ‘Digital Natives’, immersed in digital technologies, especially computer games. They expect to utilize these technologies in learning contexts. This expectation, and our response as educators, may change classroom practice and inform curriculum developments. This chapter approaches these issues ‘head on’. Starting from a review of the current educational issues, an evaluation of educational theory and instructional design principles, a new theoretical approach to the construction of “Educational Immersive Environments” (EIEs) is proposed. Elements of this approach are applied to development of an EIE to support Literacy Education in UK Primary Schools. An evaluation of a trial within a UK Primary School is discussed. Conclusions from both the theoretical development and the evaluation suggest how future teacher-practitioners may embrace both the technology and our approach to develop their own learning resources.
Resumo:
This paper aims to crystallize recent research performed at the University of Worcester to investigate the feasibility of using the commercial game engine ‘Unreal Tournament 2004’ (UT2004) to produce ‘Educational Immersive Environments’ (EIEs) suitable for education and training. Our research has been supported by the UK Higher Education Academy. We discuss both practical and theoretical aspects of EIEs. The practical aspects include the production of EIEs to support high school physics education, the education of architects, and the learning of literacy by primary school children. This research is based on the development of our novel instructional medium, ‘UnrealPowerPoint’. Our fundamental guiding principles are that, first, pedagogy must inform technology, and second, that both teachers and pupils should be empowered to produce educational materials. Our work is informed by current educational theories such as constructivism, experiential learning and socio-cultural approaches as well as elements of instructional design and game principles.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This paper is the final report from the NGL project implementing the flipped classroom approach into the undergraduate course "Organization Theory". The report describes the implementation and evaluates the outcomes of flipped classroom teaching/learning using the students' survey and statistics from YouTube analytics and the learning management platform Fronter.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Preparedness for disaster scenarios is progressively becoming an educational agenda for governments because of diversifying risks and threats worldwide. In disaster-prone Japan, disaster preparedness has been a prioritised national agenda, and preparedness education has been undertaken in both formal schooling and lifelong learning settings. This article examines the politics behind one prevailing policy discourse in the field of disaster preparedness referred to as ‘the four forms of aid’ – ‘kojo [public aid]’, ‘jijo [self-help]’, ‘gojo/kyojo [mutual aid]’. The study looks at the Japanese case, however, the significance is global, given that neo-liberal governments are increasingly having to deal with a range of disaster situations whether floods or terrorism, while implementing austerity measures. Drawing on the theory of the adaptiveness of neo-liberalism, the article sheds light on the hybridity of the current Abe government’s politics: a ‘dominant’ neo-liberal economic approach – public aid and self-help – and a ‘subordinate’ moral conservative agenda – mutual aid. It is argued that the four forms of aid are an effective ‘balancing act’, and that kyojo in particular is a powerful legitimator in the hybrid politics. The article concludes that a lifelong and life-wide preparedness model could be developed in Japan which has taken a social approach to lifelong learning. © 2016 Informa UK Limited, trading as Taylor & Francis Group
Resumo:
The present study aims to investigate the constructs of Technological Readiness Index (TRI) and the Expectancy Disconfirmation Theory (EDT) as determinants of satisfaction and continuance intention use in e-learning services. Is proposed a theoretical model that seeks to measure the phenomenon suited to the needs of public organizations that offer distance learning course with the use of virtual platforms for employees. The research was conducted from a quantitative analytical approach, via online survey in a sample of 343 employees of 2 public organizations in RN who have had e-learning experience. The strategy of data analysis used multivariate analysis techniques, including structural equation modeling (SEM), operationalized by AMOS© software. The results showed that quality, quality disconfirmation, value and value disconfirmation positively impact on satisfaction, as well as disconfirmation usability, innovativeness and optimism. Likewise, satisfaction proved to be decisive for the purpose of continuance intention use. In addition, technological readiness and performance are strongly related. Based on the structural model found by the study, public organizations can implement e-learning services for employees focusing on improving learning and improving skills practiced in the organizational environment
Resumo:
Access to new forms, conduct and practices of educational research remain elusive providing researchers stay within the narrow theoretical constructs-the static, single vista ofconventional research models. This dissertation presents the findings of an experimental study that aims to extend the discourse of educational research through a 'performative ethnographic analysis' by using a single-site case study approach. The case study is an analytical parody based on multiple discourse relevant to a 'new' and different approach to educational research so that a more comprehensive and complex process of reading and writing text becomes possible. Throughout this process, a generative methodology and interpretative base are anticipated to provide a metaphoric focus for a critical dialogue. The discourse informing the theoretical and interpretative base of the study include philosophy, science, visual arts, literary theory, critical postructuralist theory and theatre performance. The data are presented as a series of performance narratives in the form of socio-drama, interspersed with critical reflection that enables the researcher, the research participant and reader to become part ofa triadic construct. The findings from this study have major implications for informing contemporary educational research, as they demonstrate that by approaching research in 'new' and different ways, the researcher and the educational community have access to insights that are unavailable within the constraints of conventional models ofresearch.
Resumo:
Certain environments can inhibit learning and stifle enthusiasm, while others enhance learning or stimulate curiosity. Furthermore, in a world where technological change is accelerating we could ask how might architecture connect resource abundant and resource scarce innovation environments? Innovation environments developed out of necessity within urban villages and those developed with high intention and expectation within more institutionalized settings share a framework of opportunity for addressing change through learning and education. This thesis investigates formal and informal learning environments and how architecture can stimulate curiosity, enrich learning, create common ground, and expand access to education. The reason for this thesis exploration is to better understand how architects might design inclusive environments that bring people together to build sustainable infrastructure encouraging innovation and adaptation to change for years to come. The context of this thesis is largely based on Colin McFarlane’s theory that the “city is an assemblage for learning” The socio-spatial perspective in urbanism, considers how built infrastructure and society interact. Through the urban realm, inhabitants learn to negotiate people, space, politics, and resources affecting their daily lives. The city is therefore a dynamic field of emergent possibility. This thesis uses the city as a lens through which the boundaries between informal and formal logics as well as the public and private might be blurred. Through analytical processes I have examined the environmental devices and assemblage of factors that consistently provide conditions through which learning may thrive. These parameters that make a creative space significant can help suggest the design of common ground environments through which innovation is catalyzed.
Resumo:
In this thesis, I studied self-efficacy in the learning of English and Swedish in Finland. The theory of self-efficacy, which was created by Albert Bandura, suggests that the beliefs a person has of his or her capabilities in a certain task affect the person’s performance in the task. My aim was to study whether there are differences in self-efficacy beliefs between the learners of English and Swedish, and whether these beliefs correlate with the performance in the language in question. My hypotheses were that the learners of English have higher self-efficacy beliefs than the learners of Swedish and that self-efficacy beliefs correlate with language performance. The study was quantitative, and it consisted of a self-efficacy questionnaire and a language test which were distributed to students of English and Swedish in an upper secondary school in Rovaniemi. The study was answered by 137 students, of whom 93 were learners of English and 44 were learners of Swedish. The results indicated that the learners of English had a higher sense of efficacy than the learners of Swedish. The analysis proved that there was a significant correlation between English students’ self-efficacy and their performance in the language measured by the test and the grades. In addition, a significant correlation existed between Swedish students’ self-efficacy and their grades. However, there was no correlation between the Swedish students’ self-efficacy and their test results. The difference in the self-efficacy beliefs of the two language groups indicates that people in Finland are more confident in using English than Swedish, which also implies that English is more valued in Finnish society than Swedish. It is important to acknowledge the lower self-efficacy beliefs in Swedish because various studies have proven that self-efficacy affects academic achievement. As a suggestion for further research, the self-efficacy beliefs of different language groups could be compared in a qualitative study in order to understand the development of self-efficacy more profoundly.
Resumo:
This thesis focused on medical students’ language learning strategies for patient encounters. The research questions concerned the types of learning strategies that medical students use and the differences between the preclinical students and the clinical students, two groups who have had varying amounts of experience with patients. Additionally, strategy use was examined through activity systems to gain information on the context of language learning strategy use in order to learn language for patient encounters. In total, 130 first-year medical students (preclinical) and 39 fifth-year medical students (clinical) participated in the study by filling in a questionnaire on language learning strategies. In addition, two students were interviewed in order to create activity systems for the medical students at different stages of their studies. The study utilised both quantitative and qualitative research methods; the analysis of the results relies on Oxford’s Strategic Self-Regulation Model in the quantitative part and on activity theory in the qualitative part. The theoretical sections of the study introduced earlier research and theories regarding English for specific purposes, language learning strategies and activity theory. The results indicated that the medical students use affective, sociocultural-interactive and metasociocultural-interactive strategies often and avoid using negative strategies, which hinder language learning or cease communication altogether. Slight differences between the preclinical and clinical students were found, as clinical students appear to use affective and metasociocultural-interactive strategies more frequently compared to the preclinical students. The activity systems of the two students interviewed were rather similar. The students were at different stages of their studies, but their opinions were very similar. Both reported the object of learning to be mutual understanding between the patient and the doctor, which in part explains the preference for strategies that support communication and interaction. The results indicate that the nature of patient encounters affects the strategy use of the medical students at least to some extent.
Resumo:
Abstract Scheduling problems are generally NP-hard combinatorial problems, and a lot of research has been done to solve these problems heuristically. However, most of the previous approaches are problem-specific and research into the development of a general scheduling algorithm is still in its infancy. Mimicking the natural evolutionary process of the survival of the fittest, Genetic Algorithms (GAs) have attracted much attention in solving difficult scheduling problems in recent years. Some obstacles exist when using GAs: there is no canonical mechanism to deal with constraints, which are commonly met in most real-world scheduling problems, and small changes to a solution are difficult. To overcome both difficulties, indirect approaches have been presented (in [1] and [2]) for nurse scheduling and driver scheduling, where GAs are used by mapping the solution space, and separate decoding routines then build solutions to the original problem. In our previous indirect GAs, learning is implicit and is restricted to the efficient adjustment of weights for a set of rules that are used to construct schedules. The major limitation of those approaches is that they learn in a non-human way: like most existing construction algorithms, once the best weight combination is found, the rules used in the construction process are fixed at each iteration. However, normally a long sequence of moves is needed to construct a schedule and using fixed rules at each move is thus unreasonable and not coherent with human learning processes. When a human scheduler is working, he normally builds a schedule step by step following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not completed yet, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this research we intend to design more human-like scheduling algorithms, by using ideas derived from Bayesian Optimization Algorithms (BOA) and Learning Classifier Systems (LCS) to implement explicit learning from past solutions. BOA can be applied to learn to identify good partial solutions and to complete them by building a Bayesian network of the joint distribution of solutions [3]. A Bayesian network is a directed acyclic graph with each node corresponding to one variable, and each variable corresponding to individual rule by which a schedule will be constructed step by step. The conditional probabilities are computed according to an initial set of promising solutions. Subsequently, each new instance for each node is generated by using the corresponding conditional probabilities, until values for all nodes have been generated. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the Bayesian network is updated again using the current set of good rule strings. The algorithm thereby tries to explicitly identify and mix promising building blocks. It should be noted that for most scheduling problems the structure of the network model is known and all the variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus learning can amount to 'counting' in the case of multinomial distributions. In the LCS approach, each rule has its strength showing its current usefulness in the system, and this strength is constantly assessed [4]. To implement sophisticated learning based on previous solutions, an improved LCS-based algorithm is designed, which consists of the following three steps. The initialization step is to assign each rule at each stage a constant initial strength. Then rules are selected by using the Roulette Wheel strategy. The next step is to reinforce the strengths of the rules used in the previous solution, keeping the strength of unused rules unchanged. The selection step is to select fitter rules for the next generation. It is envisaged that the LCS part of the algorithm will be used as a hill climber to the BOA algorithm. This is exciting and ambitious research, which might provide the stepping-stone for a new class of scheduling algorithms. Data sets from nurse scheduling and mall problems will be used as test-beds. It is envisaged that once the concept has been proven successful, it will be implemented into general scheduling algorithms. It is also hoped that this research will give some preliminary answers about how to include human-like learning into scheduling algorithms and may therefore be of interest to researchers and practitioners in areas of scheduling and evolutionary computation. References 1. Aickelin, U. and Dowsland, K. (2003) 'Indirect Genetic Algorithm for a Nurse Scheduling Problem', Computer & Operational Research (in print). 2. Li, J. and Kwan, R.S.K. (2003), 'Fuzzy Genetic Algorithm for Driver Scheduling', European Journal of Operational Research 147(2): 334-344. 3. Pelikan, M., Goldberg, D. and Cantu-Paz, E. (1999) 'BOA: The Bayesian Optimization Algorithm', IlliGAL Report No 99003, University of Illinois. 4. Wilson, S. (1994) 'ZCS: A Zeroth-level Classifier System', Evolutionary Computation 2(1), pp 1-18.