738 resultados para CNPQ::ENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICA::MECANICAS DOS SOLOS
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification
Resumo:
Furthered mainly by new technologies, the expansion of distance education has created a demand for tools and methodologies to enhance teaching techniques based on proven pedagogical theories. Such methodologies must also be applied in the so-called Virtual Learning Environments. The aim of this work is to present a planning methodology based on known pedagogical theories which contributes to the incorporation of assessment in the process of teaching and learning. With this in mind, the pertinent literature was reviewed in order to identify the key pedagogical concepts needed to the definition of this methodology and a descriptive approach was used to establish current relations between this conceptual framework and distance education. As a result of this procedure, the Contents Map and the Dependence Map were specified and implemented, two teaching tools that promote the planning of a course by taking into account assessment still in this early stage. Inserted on Moodle, the developed tools were tested in a course of distance learning for practical observation of the involved concepts. It could be verified that the methodology proposed by the above-mentioned tools is in fact helpful in course planning and in strengthening educational assessment, placing the student as central element in the process of teaching and learning
Resumo:
In this research study, in which I discuss the discursive constitution of ethnic-racial identity of black male and female teachers, I understand that the process of identity formation of the subject covers both personal/family and social/professional areas. In it, I propose, in general terms, to analyze the discursive practices present in narratives of black male and female teachers when they look for their social insertion into different social contexts, identifying outbreaks of resistance that are present in their process of ethnicracial identities. The fundamental issue that permeates the survey investigates: how can black male and female teachers behave discursively in the construction of ethnicracial identities in multiple distinct contexts? The theoretical foundations that support this research work come from theoretical fields that complement each other; among them, French Discourse Analysis, Foucault s Theory and cultural studies. These, even with their singularities, are being interlaced by the conception that conceives language as social practice. Methodologically, I adopt an interpretative and qualitative paradigm to examine not only the linguistic repertoires that compose these teachers written narratives written but also the data that were generated by semi-structured interviews. The results show that the subjects, realizing contrary forces that interfere in their process of social inclusion, make use of acetic techniques to (re)signify the history of their lives
Resumo:
This work describes the study, the analysis, the project methodology and the constructive details of a high frequency DC/AC resonant series converter using sequential commutation techniques for the excitation of an inductive coupled thermal plasma torch. The aim of this thesis is to show the new modulation technique potentialities and to present a technological option for the high-frequency electronic power converters development. The resonant converter operates at 50 kW output power under a 400 kHz frequency and it is constituted by inverter cells using ultra-fast IGBT devices. In order to minimize the turn-off losses, the inverter cells operates in a ZVS mode referred by a modified PLL loop that maintains this condition stable, despite the load variations. The sequential pulse gating command strategy used it allows to operate the IGBT devices on its maximum power limits using the derating and destressing current scheme, as well as it propitiates a frequency multiplication of the inverters set. The output converter is connected to a series resonant circuit constituted by the applicator ICTP torch, a compensation capacitor and an impedance matching RF transformer. At the final, are presented the experimental results and the many tests achieved in laboratory as form to validate the proposed new technique
Resumo:
The main purpose of this work was the development of ceramic dielectric substrates of bismuth niobate (BiNbO4) doped with vanadium pentoxide (V2O5), with high permittivity, used in the construction of microstrip patch antennas with applications in wireless communications systems. The high electrical permittivity of the ceramic substrate provided a reduction of the antenna dimensions. The numerical results obtained in the simulations and the measurements performed with the microstrip patch antennas showed good agreement. These antennas can be used in wireless communication systems in various frequency bands. Results were satisfactory for antennas operating at frequencies in the S band, in the range between 2.5 GHz and 3.0 GHz.
Resumo:
In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases
Resumo:
The human voice is an important communication tool and any disorder of the voice can have profound implications for social and professional life of an individual. Techniques of digital signal processing have been used by acoustic analysis of vocal disorders caused by pathologies in the larynx, due to its simplicity and noninvasive nature. This work deals with the acoustic analysis of voice signals affected by pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The purpose of this work is to develop a classification system of voices to help pre-diagnosis of pathologies in the larynx, as well as monitoring pharmacological treatments and after surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients (MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT) are applied to extract relevant characteristics of the voice signal. For the classification task is used the Support Vector Machine (SVM), which aims to build optimal hyperplanes that maximize the margin of separation between the classes involved. The hyperplane generated is determined by the support vectors, which are subsets of points in these classes. According to the database used in this work, the results showed a good performance, with a hit rate of 98.46% for classification of normal and pathological voices in general, and 98.75% in the classification of diseases together: edema and nodules
Resumo:
The goal of this work is to propose a SLAM (Simultaneous Localization and Mapping) solution based on Extended Kalman Filter (EKF) in order to make possible a robot navigates along the environment using information from odometry and pre-existing lines on the floor. Initially, a segmentation step is necessary to classify parts of the image in floor or non floor . Then the image processing identifies floor lines and the parameters of these lines are mapped to world using a homography matrix. Finally, the identified lines are used in SLAM as landmarks in order to build a feature map. In parallel, using the corrected robot pose, the uncertainty about the pose and also the part non floor of the image, it is possible to build an occupancy grid map and generate a metric map with the obstacle s description. A greater autonomy for the robot is attained by using the two types of obtained map (the metric map and the features map). Thus, it is possible to run path planning tasks in parallel with localization and mapping. Practical results are presented to validate the proposal
Resumo:
With the rapid growth of databases of various types (text, multimedia, etc..), There exist a need to propose methods for ordering, access and retrieve data in a simple and fast way. The images databases, in addition to these needs, require a representation of the images so that the semantic content characteristics are considered. Accordingly, several proposals such as the textual annotations based retrieval has been made. In the annotations approach, the recovery is based on the comparison between the textual description that a user can make of images and descriptions of the images stored in database. Among its drawbacks, it is noted that the textual description is very dependent on the observer, in addition to the computational effort required to describe all the images in database. Another approach is the content based image retrieval - CBIR, where each image is represented by low-level features such as: color, shape, texture, etc. In this sense, the results in the area of CBIR has been very promising. However, the representation of the images semantic by low-level features is an open problem. New algorithms for the extraction of features as well as new methods of indexing have been proposed in the literature. However, these algorithms become increasingly complex. So, doing an analysis, it is natural to ask whether there is a relationship between semantics and low-level features extracted in an image? and if there is a relationship, which descriptors better represent the semantic? which leads us to a new question: how to use descriptors to represent the content of the images?. The work presented in this thesis, proposes a method to analyze the relationship between low-level descriptors and semantics in an attempt to answer the questions before. Still, it was observed that there are three possibilities of indexing images: Using composed characteristic vectors, using parallel and independent index structures (for each descriptor or set of them) and using characteristic vectors sorted in sequential order. Thus, the first two forms have been widely studied and applied in literature, but there were no records of the third way has even been explored. So this thesis also proposes to index using a sequential structure of descriptors and also the order of these descriptors should be based on the relationship that exists between each descriptor and semantics of the users. Finally, the proposed index in this thesis revealed better than the traditional approachs and yet, was showed experimentally that the order in this sequence is important and there is a direct relationship between this order and the relationship of low-level descriptors with the semantics of the users
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This dissertation describes the use of new Technologies of the Areas of Telecommunications, Networks and Industrial Automation for increase of the Operational Safety and obtaining of Operational Improvements in the Platforms Petroliferous Offshore. The presented solution represents the junction of several modules of these areas, making possible the Supervision and Contrai of the Platforms Petroliferous Offshore starting from an Station Onshore, in way similar to a remote contral, by virtue of the visualization possibility and audition of the operational area through cameras and microphones, looking the operator of the system to be "present" in the platform. This way, it diminishes the embarked people's need, increasing the Operational Safety. As consequence, we have the obtaining of Operational Improvements, by virtue of the use of a digital link of large band it releases multi-service. In this link traffic simultaneously digital signs of data (Ethernet Network), telephony (Phone VoIP), image and sound
Resumo:
Eventually, violations of voltage limits at buses or admissible loadings of transmission lines and/or power transformers may occur by the power system operation. If violations are detected in the supervision process, corrective measures may be carried out in order to eliminate them or to reduce their intensity. Loading restriction is an extreme solution and should only be adopted as the last control action. Previous researches have shown that it is possible to control constraints in electrical systems by changing the network topology, using the technique named Corrective Switching, which requires no additional costs. In previous works, the proposed calculations for verifying the ability of a switching variant in eliminating an overload in a specific branch were based on network reduction or heuristic analysis. The purpose of this work is to develop analytical derivation of linear equations to estimate current changes in a specific branch (due to switching measures) by means of few calculations. For bus-bar coupling, derivations will be based on short-circuit theory and Relief Function methodology. For bus-bar splitting, a Relief Function will be derived based on a technique of equivalent circuit. Although systems of linear equations are used to substantiate deductions, its formal solution for each variant, in real time does not become necessary. A priority list of promising variants is then assigned for final check by an exact load flow calculation and a transient analysis using ATP Alternative Transient Program. At last, results obtained by simulation in networks with different features will be presented
Resumo:
The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system
Resumo:
The search for ever smaller device and without loss of performance has been increasingly investigated by researchers involving applied electromagnetics. Antennas using ceramics materials with a high dielectric constant, whether acting as a substract element of patch radiating or as the radiant element are in evidence in current research, that due to the numerous advantages offered, such as: low profile, ability to reduce the its dimensions when compared to other devices, high efficiency of ratiation, suitability the microwave range and/or millimeter wave, low temperature coefficient and low cost. The reason for this high efficiency is that the dielectric losses of ceramics are very low when compared to commercially materials sold used in printed circuit boards, such as fiberglass and phenolite. These characteristics make ceramic devices suitable for operation in the microwave band. Combining the design of patch antennas and/or dielectric resonator antenna (DRA) to certain materials and the method of synthesis of these powders in the manufacture of devices, it s possible choose a material with a dielectric constant appropriate for the design of an antenna with the desired size. The main aim of this work is the design of patch antennas and DRA antennas on synthesis of ceramic powders (synthesis by combustion and polymeric precursors - Pe- chini method) nanostructured with applications in the microwave band. The conventional method of mix oxides was also used to obtain nanometric powders for the preparation of tablets and dielectric resonators. The devices manufactured and studied on high dielectric constant materials make them good candidates to have their small size compared to other devices operating at the same frequency band. The structures analyzed are excited by three different techniques: i) microstrip line, ii) aperture coupling and iii) inductive coupling. The efficiency of these techniques have been investigated experimentally and compared with simulations by Ansoft HFSS, used in the accurate analysis of the electromagnetic behavior of antennas over the finite element method (FEM). In this thesis a literature study on the theory of microstrip antennas and DRA antenna is performed. The same study is performed about the materials and methods of synthesis of ceramic powders, which are used in the manufacture of tablets and dielectric cylinders that make up the devices investigated. The dielectric media which were used to support the analysis of the DRA and/or patch antennas are analyzed using accurate simulations using the finite difference time domain (FDTD) based on the relative electrical permittivity (er) and loss tangent of these means (tand). This work also presents a study on artificial neural networks, showing the network architecture used and their characteristics, as well as the training algorithms that were used in training and modeling some parameters associated with the devices investigated
Resumo:
Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations