919 resultados para Air bags.
Resumo:
Sixteen monthly air–sea heat flux products from global ocean/coupled reanalyses are compared over 1993–2009 as part of the Ocean Reanalysis Intercomparison Project (ORA-IP). Objectives include assessing the global heat closure, the consistency of temporal variability, comparison with other flux products, and documenting errors against in situ flux measurements at a number of OceanSITES moorings. The ensemble of 16 ORA-IP flux estimates has a global positive bias over 1993–2009 of 4.2 ± 1.1 W m−2. Residual heat gain (i.e., surface flux + assimilation increments) is reduced to a small positive imbalance (typically, +1–2 W m−2). This compensation between surface fluxes and assimilation increments is concentrated in the upper 100 m. Implied steady meridional heat transports also improve by including assimilation sources, except near the equator. The ensemble spread in surface heat fluxes is dominated by turbulent fluxes (>40 W m−2 over the western boundary currents). The mean seasonal cycle is highly consistent, with variability between products mostly <10 W m−2. The interannual variability has consistent signal-to-noise ratio (~2) throughout the equatorial Pacific, reflecting ENSO variability. Comparisons at tropical buoy sites (10°S–15°N) over 2007–2009 showed too little ocean heat gain (i.e., flux into the ocean) in ORA-IP (up to 1/3 smaller than buoy measurements) primarily due to latent heat flux errors in ORA-IP. Comparisons with the Stratus buoy (20°S, 85°W) over a longer period, 2001–2009, also show the ORA-IP ensemble has 16 W m−2 smaller net heat gain, nearly all of which is due to too much latent cooling caused by differences in surface winds imposed in ORA-IP.
Resumo:
The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment
Resumo:
European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter(PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.
Resumo:
This work presents an analysis of a lowermost stratospheric air intrusion event over the coast of Brazil, which may have been responsible for a secondary surface cyclogenesis over the southwestern Atlantic Ocean. The surface cyclone initiated at 0600 UTC 17 April 1999 in a cold air mass in the rear of a cold front after a primary cyclone developed over the same region. The analysis of the secondary cyclone revealed the presence of lowermost stratospheric air intrusion characterized by anomalous potential vorticity (PV), dry air, and high concentration of ozone in atmospheric column. The system developed on the eastern side of an upper level core of PV anomaly, which induced a cyclonic wind circulation at lower levels and favored the onset of the secondary cyclone. In midlevels (500 hPa), the cutoff low development contributed to reduce the propagation speed of the wave pattern. This feature seemed to (1) allow the low-level cold/dry air to heat/moisten associated with sensible and latent fluxes transferred from the ocean to the atmosphere, which intensified a baroclinic zone parallel to the coast, and (2) contribute to the long duration of the system. The present analysis indicates that this secondary cyclone development could be the result of the coupling between the PV anomaly in the upper levels and low-level air-sea interaction.
Resumo:
In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.
Resumo:
In this work, the scattered X-ray beams produced by a mammography unit with a Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were applied in the evaluation of the Hp(10, 0) and mean conversion coefficients from air kerma to the personal dose equivalent ((C) over barH(p(10,0 degrees))). The higher values of H(p)(10,0 degrees) are related to the Mo/Rh combination whereas the lower ones are for the W/Rh target/filter. (C) over barH(p(10,0 degrees)) values are in the range 0.19-0.54 Sv/Gy, where the higher values comprise the W/Rh combination. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The antiparasitic property of peptides is believed to be associated with their interactions with the protozoan membrane, which calls for research on the identification of membrane sites capable of peptide binding. In this study we investigated the interaction of a lipophilicglutathioine peptide known to be effective against the African Sleeping Sickness (ASS - African Trypanosomiasis) and cell membrane models represented by Langmuir monolayers. It is shown that even small amounts of the peptide affect the monolayers of some phospholipids and other lipids, which points to a significant interaction. The latter did not depend on the electrical charge of the monolayer-forming molecules but the peptide action was particularly distinctive for cholesterol + sphingomyelin monolayers that roughly resemble rafts on a cell membrane. Using in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), we found that the orientation of the peptide is affected by the phospholipids and dioctadecyldimethylammonium bromide (DODAB), but not in monolayers comprising cholesterol + sphingomyelin. In this mixed monolayer resembling rafts, the peptide still interacts and has some induced order, probably because the peptide molecules are fitted together into a compact monolayer. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic glutathioine peptide, and this may have important implications in understanding how the peptide acts on specific sites of the protozoan membrane. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.
Resumo:
The capability of self-assembly and molecular recognition of biomolecules is essential for many nanotechnological applications, as in the use of alkyl-modified nucleosides and oligonucleotides to increase the cellular uptake of DNA and RNA. In this study, we show that a lipophilic nucleoside, which is an isomer mixture of 2`-palmitoyluridin und 3`-palmitoyluridin, forms Langmuir monolayers and Langmuir-Blodgett films as a typical amphiphile, though with a smaller elasticity. The nucleoside may be incorporated into dipalmitoyl phosphatidyl choline (DPPC) monolayers that serve as a simplified cell membrane model. The molecular-level interactions between the nucleoside and DPPC led to a remarkable condensation of the mixed monolayer, which affected both surface pressure and surface potential isotherms. The morphology of the mixed monolayers was dominated by the small domains of the nucleoside. The mixed monolayers could be deposited onto solid substrates as a one-layer Langmuir Blodgett film that displayed UV-vis absorption spectra typical of aggregated nucleosides owing to the interaction between the nucleoside and DPPC. The formation of solid films with DNA building blocks in the polar heads may open the way for devices and sensors be produced to exploit their molecular recognition properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders (GBS) distribution is a new class of positively skewed models with lighter and heavier tails than the traditional Birnbaum-Saunders (BS) distribution, which is largely applied to study lifetimes. However, the theoretical argument and the interesting properties of the GBS model have made its application possible beyond the lifetime analysis. The aim of this paper is to present the GBS distribution as a useful model for describing pollution data and deriving its positive and negative moments. Based on these moments, we develop estimation and goodness-of-fit methods. Also, some properties of the proposed estimators useful for developing asymptotic inference are presented. Finally, an application with real data from Environmental Sciences is given to illustrate the methodology developed. This example shows that the empirical fit of the GBS distribution to the data is very good. Thus, the GBS model is appropriate for describing air pollutant concentration data, which produces better results than the lognormal model when the administrative target is determined for abating air pollution. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The surface activity of salts added to water is Air orders of magnitude lower than that of surfactants. Sodium trifluoromethanesulfonate (NaTf) produced a change in surface tension. with concentration, Delta gamma/Delta c, of -13.2 mN.L/m.mol. This value is ca. 4-fold larger than those of simple salts and that of methanesulfonate. This unexpected surface effect suggested that positively charged micelles containing Tf could exhibit interesting properties. Dodecyltrimethylammonium triflate (DTATf) had a higher Kraft temperature (37 degrees C) and a lower cmc (5 x 10(-3)M) and degree of dissociation (0.11) than the chloride and bromide salts of DTA. Above the Kraft temperature, at a characteristic temperature t(1), the addition of NaTf above 0.05 M. to a DTATf solution induced phase separation. By increasing the temperature of the two-phase system to above t(1), a homogeneous, transparent solution was obtained at a characteristic temperature t(2). These results, together with well-known triflate properties, led us to suggest that the Tf ion pairs With DTA and that the -CF(3) group may be dehydrated in the interfacial region, resulting in new and interesting self-aggregated structures.
Resumo:
Understanding the behavior of petroleum films at the air/water interface is crucial for dealing with oil sticks and reducing the damages to the environment, which has normally been attempted with studies of Langmuir films made of fractions of petroleum. However, the properties of films from whole petroleum samples may differ considerably from those of individual fractions, Using surface pressure and surface potential measurements and Brewster angle and fluorescence microscopy, we show that petroleum forms it nonhomogeneous Langmuir film at the air-water interface. The surface pressure isotherms for petroleum Langmuir films exhibit gas (G), liquid-expanded (LE), and liquid-condensed phases, with almost no hysteresis in the compression-decompression cycles. Domains formed upon compression from the G to the LE phase were accompanied by an increase in fluorescence intensity with excitation at 400-440 nm owing to an increase in the surface density of the chromophores in the petroleum film. The surface pressure and the fluorescence microscopy data pointed to self-assembling domains into a pseudophase in thermo-dynamic equilibrium with other less emitting petroleum components. This hypothesis was supported by Brewster angle microscopy images, whereby the appearance of water domains even at high surface pressures confirms the tendency of petroleum to stabilize emulsion systems. The results presented here suggest that, for understanding the interaction with water, it may be more appropriate to use the whole petroleum samples rather than its fractions.