932 resultados para scattering geometry
Resumo:
The automatic extraction of biometric descriptors of anonymous people is a challenging scenario in camera networks. This task is typically accomplished making use of visual information. Calibrated RGBD sensors make possible the extraction of point cloud information. We present a novel approach for people semantic description and re-identification using the individual point cloud information. The proposal combines the use of simple geometric features with point cloud features based on surface normals.
Resumo:
[EN]An analysis of the influence that reservoir levels and bottom sediment properties (especially on the degree of saturation) have on the dynamic response of arch dams is caried out. For this purpose, a Boundary Element Model developed by the authors that allows the direct dynamic study of problems that incorporate scalar, viscoelastic and poroelastic media is used.
Resumo:
High spectral resolution radiative transfer (RT) codes are essential tools in the study of the radiative energy transfer in the Earth atmosphere and a support for the development of parameterizations for fast RT codes used in climate and weather prediction models. Cirrus clouds cover permanently 30% of the Earth's surface, representing an important contribution to the Earth-atmosphere radiation balance. The work has been focussed on the development of the RT model LBLMS. The model, widely tested in the infra-red spectral range, has been extended to the short wave spectrum and it has been used in comparison with airborne and satellite measurements to study the optical properties of cirrus clouds. A new database of single scattering properties has been developed for mid latitude cirrus clouds. Ice clouds are treated as a mixture of ice crystals with various habits. The optical properties of the mixture are tested in comparison to radiometric measurements in selected case studies. Finally, a parameterization of the mixture for application to weather prediction and global circulation models has been developed. The bulk optical properties of ice crystals are parameterized as functions of the effective dimension of measured particle size distributions that are representative of mid latitude cirrus clouds. Tests with the Limited Area Weather Prediction model COSMO have shown the impact of the new parameterization with respect to cirrus cloud optical properties based on ice spheres.
Resumo:
In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.
Resumo:
Zusammenfassung Um zu einem besseren Verständnis des Prozesses der Biomineralisation zu gelangen, muss das Zusammenwirken der verschiedenen Typen biologischer Makromoleküle, die am Keimbildungs- und Wachstumsprozess der Minerale beteiligt sind, berücksichtigt werden. In dieser Arbeit wird ein neues Modellsystem eingeführt, das aus einem SAM (self-assembled monolayer) mit verschiedenen Funktionalitäten und unterschiedlichen, gelösten Makromolekülen besteht. Es konnte gezeigt werden, dass die Kristallisation von Vaterit (CaCO3) sowie Strontianit (SrCO3) Nanodrähten der Präsenz von Polyacrylat in Kooperation mit einer COOH-funktionalisierten SAM-Oberfläche zugeschrieben werden kann. Die Kombination bestehend aus einer polaren SAM-Oberfläche und Polyacrylat fungiert als Grenzfläche für die Struktur dirigierende Kristallisation von Nanodraht-Kristallen. Weiter konnte gezeigt werden, dass die Phasenselektion von CaCO3 durch die kooperative Wechselwirkung zwischen einer SAM-Oberfläche und einem daran adsorbierten hb-Polyglycerol kontrolliert wird. Auch die Funktionalität einer SAM-Oberfläche in Gegenwart von Carboxymethyl-cellulose übt einen entscheidenden Einfluss auf die Phasenselektion des entstehenden Produktes aus. In der vorliegenden Arbeit wurden Untersuchungen an CaCO3 zur homogenen Keimbildung, zur Nukleation in Gegenwart eines Proteins sowie auf Kolloiden, die als Template fungieren, mittels Kleinwinkel-Neutronenstreuung durchgeführt. Die homogene Kristallisation in wässriger Lösung stellte sich als ein mehrstufiger Prozess heraus. In Gegenwart des Eiweißproteins Ovalbumin konnten drei Phasen identifiziert werden, darunter eine anfänglich vorhandene amorphe sowie zwei kristalline Phasen.
Resumo:
A sample scanning confocal optical microscope (SCOM) was designed and constructed in order to perform local measurements of fluorescence, light scattering and Raman scattering. This instrument allows to measure time resolved fluorescence, Raman scattering and light scattering from the same diffraction limited spot. Fluorescence from single molecules and light scattering from metallic nanoparticles can be studied. First, the electric field distribution in the focus of the SCOM was modelled. This enables the design of illumination modes for different purposes, such as the determination of the three-dimensional orientation of single chromophores. Second, a method for the calculation of the de-excitation rates of a chromophore was presented. This permits to compare different detection schemes and experimental geometries in order to optimize the collection of fluorescence photons. Both methods were combined to calculate the SCOM fluorescence signal of a chromophore in a general layered system. The fluorescence excitation and emission of single molecules through a thin gold film was investigated experimentally and modelled. It was demonstrated that, due to the mediation of surface plasmons, single molecule fluorescence near a thin gold film can be excited and detected with an epi-illumination scheme through the film. Single molecule fluorescence as close as 15nm to the gold film was studied in this manner. The fluorescence dynamics (fluorescence blinking and excited state lifetime) of single molecules was studied in the presence and in the absence of a nearby gold film in order to investigate the influence of the metal on the electronic transition rates. The trace-histogram and the autocorrelation methods for the analysis of single molecule fluorescence blinking were presented and compared via the analysis of Monte-Carlo simulated data. The nearby gold influences the total decay rate in agreement to theory. The gold presence produced no influence on the ISC rate from the excited state to the triplet but increased by a factor of 2 the transition rate from the triplet to the singlet ground state. The photoluminescence blinking of Zn0.42Cd0.58Se QDs on glass and ITO substrates was investigated experimentally as a function of the excitation power (P) and modelled via Monte-Carlo simulations. At low P, it was observed that the probability of a certain on- or off-time follows a negative power-law with exponent near to 1.6. As P increased, the on-time fraction reduced on both substrates whereas the off-times did not change. A weak residual memory effect between consecutive on-times and consecutive off-times was observed but not between an on-time and the adjacent off-time. All of this suggests the presence of two independent mechanisms governing the lifetimes of the on- and off-states. The simulated data showed Poisson-distributed off- and on-intensities, demonstrating that the observed non-Poissonian on-intensity distribution of the QDs is not a product of the underlying power-law probability and that the blinking of QDs occurs between a non-emitting off-state and a distribution of emitting on-states with different intensities. All the experimentally observed photo-induced effects could be accounted for by introducing a characteristic lifetime tPI of the on-state in the simulations. The QDs on glass presented a tPI proportional to P-1 suggesting the presence of a one-photon process. Light scattering images and spectra of colloidal and C-shaped gold nano-particles were acquired. The minimum size of a metallic scatterer detectable with the SCOM lies around 20 nm.
Resumo:
Die Drei-Spektrometer-Anlage am Mainzer Institut für Kernphysik wurde um ein zusätzliches Spektrometer ergänzt, welches sich durch seine kurze Baulänge auszeichnet und deshalb Short-Orbit-Spektrometer (SOS) genannt wird. Beim nominellen Abstand des SOS vom Target (66 cm) legen die nachzuweisenden Teilchen zwischen Reaktionsort und Detektor eine mittlere Bahnlänge von 165 cm zurück. Für die schwellennahe Pionproduktion erhöht sich dadurch im Vergleich zu den großen Spektrometern die Überlebenswahrscheinlichkeit geladener Pionen mit Impuls 100 MeV/c von 15% auf 73%. Demzufolge verringert sich der systematische Fehler ("Myon-Kontamination"), etwa bei der geplanten Messung der schwachen Formfaktoren G_A(Q²) und G_P(Q²), signifikant. Den Schwerpunkt der vorliegenden Arbeit bildet die Driftkammer des SOS. Ihre niedrige Massenbelegung (0,03% X_0) zur Reduzierung der Kleinwinkelstreuung ist auf den Nachweis niederenergetischer Pionen hin optimiert. Aufgrund der neuartigen Geometrie des Detektors musste eine eigene Software zur Spurrekonstruktion, Effizienzbestimmung etc. entwickelt werden. Eine komfortable Möglichkeit zur Eichung der Driftweg-Driftzeit-Relation, die durch kubische Splines dargestellt wird, wurde implementiert. Das Auflösungsvermögen des Spurdetektors liegt in der dispersiven Ebene bei 76 µm für die Orts- und 0,23° für die Winkelkoordinate (wahrscheinlichster Fehler) sowie entsprechend in der nicht-dispersiven Ebene bei 110 µm bzw. 0,29°. Zur Rückrechnung der Detektorkoordinaten auf den Reaktionsort wurde die inverse Transfermatrix des Spektrometers bestimmt. Hierzu wurden an Protonen im ¹²C-Kern quasielastisch gestreute Elektronen verwendet, deren Startwinkel durch einen Lochkollimator definiert wurden. Daraus ergeben sich experimentelle Werte für die mittlere Winkelauflösung am Target von sigma_phi = 1,3 mrad bzw. sigma_theta = 10,6 mrad. Da die Impulseichung des SOS nur mittels quasielastischer Streuung (Zweiarmexperiment) durchgeführt werden kann, muss man den Beitrag des Protonarms zur Breite des Piks der fehlenden Masse in einer Monte-Carlo-Simulation abschätzen und herausfalten. Zunächst lässt sich nur abschätzen, dass die Impulsauflösung sicher besser als 1% ist.
Resumo:
The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
The Spin-Statistics theorem states that the statistics of a system of identical particles is determined by their spin: Particles of integer spin are Bosons (i.e. obey Bose-Einstein statistics), whereas particles of half-integer spin are Fermions (i.e. obey Fermi-Dirac statistics). Since the original proof by Fierz and Pauli, it has been known that the connection between Spin and Statistics follows from the general principles of relativistic Quantum Field Theory. In spite of this, there are different approaches to Spin-Statistics and it is not clear whether the theorem holds under assumptions that are different, and even less restrictive, than the usual ones (e.g. Lorentz-covariance). Additionally, in Quantum Mechanics there is a deep relation between indistinguishabilty and the geometry of the configuration space. This is clearly illustrated by Gibbs' paradox. Therefore, for many years efforts have been made in order to find a geometric proof of the connection between Spin and Statistics. Recently, various proposals have been put forward, in which an attempt is made to derive the Spin-Statistics connection from assumptions different from the ones used in the relativistic, quantum field theoretic proofs. Among these, there is the one due to Berry and Robbins (BR), based on the postulation of a certain single-valuedness condition, that has caused a renewed interest in the problem. In the present thesis, we consider the problem of indistinguishability in Quantum Mechanics from a geometric-algebraic point of view. An approach is developed to study configuration spaces Q having a finite fundamental group, that allows us to describe different geometric structures of Q in terms of spaces of functions on the universal cover of Q. In particular, it is shown that the space of complex continuous functions over the universal cover of Q admits a decomposition into C(Q)-submodules, labelled by the irreducible representations of the fundamental group of Q, that can be interpreted as the spaces of sections of certain flat vector bundles over Q. With this technique, various results pertaining to the problem of quantum indistinguishability are reproduced in a clear and systematic way. Our method is also used in order to give a global formulation of the BR construction. As a result of this analysis, it is found that the single-valuedness condition of BR is inconsistent. Additionally, a proposal aiming at establishing the Fermi-Bose alternative, within our approach, is made.
Resumo:
A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.
Resumo:
In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.
Resumo:
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e p)gamma was measured at MAMI using the A1 Collaboration three spectrometer setup with Q2=0.33 (GeV/c)2. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables.
Resumo:
This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N N and N Delta transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N Delta GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes.