968 resultados para pk-yritys


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we study the effect of the nonminimal coupling j(mu)epsilon(munualpha)partial derivative(nu)A(alpha) on the static potential in multiflavor QED(3). Both cases of four and two components fermions are studied separately at leading order in the 1/N expansion. Although a nonlocal Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large intercharge distance. The extra nonminimal couplings have no important influence on the static potential at large intercharge distances. However, interesting effects show up at finite distances. In particular, for strong enough nonminimal coupling we may have a new massive pole in the photon propagator, while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the nonminimal couplings lead to a finite range repulsive force between charges of opposite signs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dirac-like monopoles are studied in three-dimensional Abelian Maxwell and Maxwell-Chern-Simons models. Their scalar nature is highlighted and discussed through a dimensional reduction of four-dimensional electrodynamics with electric and magnetic sources. Some general properties and similarities whether considered in Minkowski or Euclidean space are mentioned. However, by virtue of the structure of the space-time in which they are studied, a number of differences among them occur. Furthermore, we pay attention to some consequences of these objects when they act upon the usual particles. Among other subjects, special attention is given to the study of a Lorentz-violating nonminimal coupling between neutral fermions and the field generated by a monopole alone. In addition, an analogue of the Aharonov-Casher effect is discussed in this framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in D=2 and D=3 dimensions. This is done through the computation of the effective action up to quadratic terms in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively in k/m, where k is the photon momentum and m the fermion mass. The poles of the propagators were determined numerically by using the MATHEMATICA software. In D=2 there is always a massless pole whereas for strong enough Thirring coupling a massive pole may appear. For D=3 there are three regions in parameter space. We may have one or two massive poles or even no pole at all. The interquark static potential is computed analytically in D=2. We notice that the Thirring interaction contributes with a screening term to the confining linear potential of massive two-dimensional QED (QED(2)). In D=3 the static potential must be calculated numerically. The screening nature of the massive QED(3) prevails at any distance, indicating that this is a universal feature of D=3 electromagnetic interaction. Our results become exact for an infinite number of fermion flavors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m(1/2) twice the one in the usual multilepton signals in a large fraction of the parameter space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some years ago, Cho and Vilenkin, introduced a model which presents topological solutions, despite not having degenerate vacua as is usually expected. Here we present a new model with topological defects, connecting degenerate vacua but which in a certain limit recovers precisely the one proposed originally by Cho and Vilenkin. In other words, we found a kind of parent model for the so called vacuumless model. Then the idea is extended to a model recently introduced by Bazeia et al. Finally, we trace some comments the case of the Liouville model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve the generalized relativistic harmonic oscillator in 1+1 dimensions, i.e., including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs. We consider positive and negative quadratic potentials and discuss in detail their bound-state solutions for fermions and antifermions. The main features of these bound states are the same as the ones of the generalized three-dimensional relativistic harmonic oscillator bound states. The solutions found for zero pseudoscalar potential are related to the spin and pseudospin symmetry of the Dirac equation in 3+1 dimensions. We show how the charge conjugation and gamma(5) chiral transformations relate the several spectra obtained and find that for massless particles the spin and pseudospin symmetry-related problems have the same spectrum but different spinor solutions. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with scalar, vector, and isoscalar tensor interactions and discuss the conditions in which one may have both nucleon and antinucleon bound states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We devote effort to studying some nonlinear actions, characteristic of W theories, in the framework of the soldering formalism. We disclose interesting new results concerning the embedding of the original chiral W particles in different metrical spaces in the final soldered action; i.e., the metric is modified by the soldering interference process. The results are presented in a weak field approximation for the W-N case when Ngreater than or equal to3 and also in an exact way for W-2. We promote a generalization of the interference phenomenon to W-N theories of different chiralities and show that the geometrical features introduced can yield a new understanding of the interference formalism in quantum field theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an energy. decomposition of the pseudospin energy splittings, we show that the changes in these splittings come mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners and through changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei is of a dynamical nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supersymmetric theories with bilinear R-parity violation can give rise to the observed neutrino masses and mixings. One important feature of such models is that the lightest supersymmetric particle might have a sufficiently large lifetime to produce detached vertices. Working in the framework of supergravity models, we analyze the potential of the LHCb experiment to search for supersymmetric models exhibiting bilinear R-parity violation. We show that the LHCb experiment can probe a large fraction of the m(0)circle times m(1/2), being able to explore gluino masses up to 1.3 TeV. The LHCb discover potential for these kinds of models is similar to the ATLAS and CMS ones in the low luminosity phase of operation of the LHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)