Unusual Yang-Lee edge singularity in the one-dimensional axial-next-to-nearest-neighbor Ising model
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
05/11/2010
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) We show here for the one-dimensional spin-1/2 axial-next-to-nearest-neighbor Ising model in an external magnetic field that the linear density of Yang-Lee zeros may diverge with critical exponent sigma=-2/3 at the Yang-Lee edge singularity. The necessary condition for this unusual behavior is the triple degeneracy of the transfer-matrix eigenvalues. If this condition is absent we have the usual value sigma=-1/2. Analogous results have been found in the literature in the spin-1 Blume-Emery-Griffths model and in the three-state Potts model in a magnetic field with two complex components. Our results support the universality of sigma=-2/3 which might be a one-dimensional footprint of a tricritical version of the Yang-Lee edge singularity possibly present also in higher-dimensional spin models. |
Formato |
8 |
Identificador |
http://dx.doi.org/10.1103/PhysRevE.82.051108 Physical Review E. College Pk: Amer Physical Soc, v. 82, n. 5, p. 8, 2010. 1539-3755 http://hdl.handle.net/11449/9233 10.1103/PhysRevE.82.051108 WOS:000283846200002 WOS000283846200002.pdf |
Idioma(s) |
eng |
Publicador |
Amer Physical Soc |
Relação |
Physical Review E |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |