987 resultados para phylogeny
Resumo:
Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.
Resumo:
Owing to its special mode of evolution and central role in the adaptive immune system, the major histocompatibility complex (MHC) has become the focus of diverse disciplines such as immunology, evolutionary ecology, and molecular evolution. MHC evolution has been studied extensively in diverse vertebrate lineages over the last few decades, and it has been suggested that birds differ from the established mammalian norm. Mammalian MHC genes evolve independently, and duplication history (i.e., orthology) can usually be traced back within lineages. In birds, this has been observed in only 3 pairs of closely related species. Here we report strong evidence for the persistence of orthology of MHC genes throughout an entire avian order. Phylogenetic reconstructions of MHC class II B genes in 14 species of owls trace back orthology over tens of thousands of years in exon 3. Moreover, exon 2 sequences from several species show closer relationships than sequences within species, resembling transspecies evolution typically observed in mammals. Thus, although previous studies suggested that long-term evolutionary dynamics of the avian MHC was characterized by high rates of concerted evolution, resulting in rapid masking of orthology, our results question the generality of this conclusion. The owl MHC thus opens new perspectives for a more comprehensive understanding of avian MHC evolution.
Resumo:
Estudi realitzat a partir d’una estada a la Institut J.W. Jenkinson Laboratory for Evolution and Development of the University of Oxford, Regne Unit, entre 2010 i 2012. He estat membre del laboratori del Professor Peter W.H. Holland com a becari post-doctoral Beatriu de Pinós des de setembre de 2010 al setembre de 2012. El nostre projecte de recerca se centra en l'anàlisi genòmic comparatiu del Regne Animal, tot explorant el contingut dels genomes a través de totes les branques de l'arbre dels animals. Totes les referències a les meves publicacions durant aquest post-doc es poden trobar a http://about.me/jordi_paps. Crec que el nombre i la qualitat dels resultats del meu post-doc, un total de 8 publicacions incloent dos articles a la prestigiosa revista Nature, són prova de l'èxit d'aquest post-doc. Prof Peter W. H. Holland (Departament de Zoologia de la Universitat d'Oxford) i jo som coautors de tres articles de genòmica comparativa, resultats directes d'aquest projecte: 1) comparació de families gèniques entre vertebrats invertebrats (Briefings in Functional Genomics), 2) el genoma de l'ostra (publicat a la revista Nature), i 3) els genomes de 6 platihelmints paràsits (acceptat també a Nature). A més, tenim altres 2 treballs en preparació. Un d'ells analitza l'evolució, expressió i funció dels gens Hox al a la tènia Hymenolepis. El perfil fi d'aquests gens clau del desenvolupament esclareix els canvis d'estil de vida dels organismes. A més, durant aquest últim post-doc he participat en diverses col•laboracions, incloent anàlisi de gens d'envelliment a cucs plans, un estudi sobre la filogènia del grup Gastrotricha, una revisió de l'evolució phylum Platyhelminthes, així com un capítol d'un llibre sobre l'evolució dels animals bilaterals. Finalment, gràcies a la beca Beatriu de Pinós, el Prof. Peter W.H. Holland m'ha convidat a formar part del seu equip com un investigador post-doctoral en el seu projecte ERC Advance actual sobre duplicacions genòmiques.
Resumo:
Orphan receptors of the FTZ-F1-related group of nuclear receptors (xFF1r) were identified in Xenopus laevis by isolation of cDNAs from a neurula stage library. Two cDNAs were found, which encode full length, highly related receptor proteins, xFF1rA and B, whose closet relative known so far is the murine LRH-1 orphan receptor. xFF1rA protein expressed by a recombinant vaccinia virus system specifically binds to FTZ-F1 response elements (FRE; PyCAAGGPyCPu). In cotransfection studies, xFF1rA constitutively activates transcription, in a manner dependent on the number of FREs. The amounts of at least four mRNAs encoding full-length receptors greatly increase between gastrula and early tailbud stages and decrease at later stages. At early tailbud stages, xFTZ-F1-related antigens are found in all nuclei of the embryo.
Resumo:
Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.
Resumo:
Oxalate catabolism, which can have both medical and environmental implications, is performed by phylogenetically diverse bacteria. The formyl-CoA-transferase gene was chosen as a molecular marker of the oxalotrophic function. Degenerated primers were deduced from an alignment of frc gene sequences available in databases. The specificity of primers was tested on a variety of frc-containing and frc-lacking bacteria. The frc-primers were then used to develop PCR-DGGE and real-time SybrGreen PCR assays in soils containing various amounts of oxalate. Some PCR products from pure cultures and from soil samples were cloned and sequenced. Data were used to generate a phylogenetic tree showing that environmental PCR products belonged to the target physiological group. The extent of diversity visualised on DGGE pattern was higher for soil samples containing carbonate resulting from oxalate catabolism. Moreover, the amount of frc gene copies in the investigated soils was detected in the range of 1.64x10(7) to 1.75x10(8)/g of dry soil under oxalogenic tree (representing 0.5 to 1.2% of total 16S rRNA gene copies), whereas the number of frc gene copies in the reference soil was 6.4x10(6) (or 0.2% of 16S rRNA gene copies). This indicates that oxalotrophic bacteria are numerous and widespread in soils and that a relationship exists between the presence of the oxalogenic trees Milicia excelsa and Afzelia africana and the relative abundance of oxalotrophic guilds in the total bacterial communities. This is obviously related to the accomplishment of the oxalate-carbonate pathway, which explains the alkalinization and calcium carbonate accumulation occurring below these trees in an otherwise acidic soil. The molecular tools developed in this study will allow in-depth understanding of the functional implication of these bacteria on carbonate accumulation as a way of atmospheric CO(2) sequestration.
Resumo:
ExPASy (http://www.expasy.org) has worldwide reputation as one of the main bioinformatics resources for proteomics. It has now evolved, becoming an extensible and integrative portal accessing many scientific resources, databases and software tools in different areas of life sciences. Scientists can henceforth access seamlessly a wide range of resources in many different domains, such as proteomics, genomics, phylogeny/evolution, systems biology, population genetics, transcriptomics, etc. The individual resources (databases, web-based and downloadable software tools) are hosted in a 'decentralized' way by different groups of the SIB Swiss Institute of Bioinformatics and partner institutions. Specifically, a single web portal provides a common entry point to a wide range of resources developed and operated by different SIB groups and external institutions. The portal features a search function across 'selected' resources. Additionally, the availability and usage of resources are monitored. The portal is aimed for both expert users and people who are not familiar with a specific domain in life sciences. The new web interface provides, in particular, visual guidance for newcomers to ExPASy.
Resumo:
BACKGROUND: Abiotrophia and Granulicatella species, previously referred to as nutritionally variant streptococci (NVS), are significant causative agents of endocarditis and bacteraemia. In this study, we reviewed the clinical manifestations of infections due to A. defectiva and Granulicatella species that occurred at our institution between 1998 and 2004. METHODS: The analysis included all strains of NVS that were isolated from blood cultures or vascular graft specimens. All strains were identified by 16S rRNA sequence analysis. Patients' medical charts were reviewed for each case of infection. RESULTS: Eleven strains of NVS were isolated during the 6-year period. Identification of the strains by 16S rRNA showed 2 genogroups: Abiotrophia defectiva (3) and Granulicatella adiacens (6) or "para-adiacens" (2). The three A. defectiva strains were isolated from immunocompetent patients with endovascular infections, whereas 7 of 8 Granulicatella spp. strains were isolated from immunosuppressed patients, mainly febrile neutropenic patients. We report the first case of "G. para-adiacens" bacteraemia in the setting of febrile neutropenia. CONCLUSION: We propose that Granulicatella spp. be considered as a possible agent of bacteraemia in neutropenic patients.
Resumo:
PHO1 has been recently identified as a protein involved in the loading of inorganic phosphate into the xylem of roots in Arabidopsis. The genome of Arabidopsis contains 11 members of the PHO1 gene family. The cDNAs of all PHO1 homologs have been cloned and sequenced. All proteins have the same topology and harbor a SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the C-terminal hydrophobic portion. The SPX and EXS domains have been identified in yeast (Saccharomyces cerevisiae) proteins involved in either phosphate transport or sensing or in sorting proteins to endomembranes. The Arabidopsis genome contains additional proteins of unknown function containing either a SPX or an EXS domain. Phylogenetic analysis indicated that the PHO1 family is subdivided into at least three clusters. Reverse transcription-PCR revealed a broad pattern of expression in leaves, roots, stems, and flowers for most genes, although two genes are expressed exclusively in flowers. Analysis of the activity of the promoter of all PHO1 homologs using promoter-beta-glucuronidase fusions revealed a predominant expression in the vascular tissues of roots, leaves, stems, or flowers. beta-Glucuronidase expression is also detected for several promoters in nonvascular tissue, including hydathodes, trichomes, root tip, root cortical/epidermal cells, and pollen grains. The expression pattern of PHO1 homologs indicates a likely role of the PHO1 proteins not only in the transfer of phosphate to the vascular cylinder of various tissues but also in the acquisition of phosphate into cells, such as pollen or root epidermal/cortical cells.
Resumo:
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
Resumo:
Aim Recently developed parametric methods in historical biogeography allow researchers to integrate temporal and palaeogeographical information into the reconstruction of biogeographical scenarios, thus overcoming a known bias of parsimony-based approaches. Here, we compare a parametric method, dispersal-extinction-cladogenesis (DEC), against a parsimony-based method, dispersal-vicariance analysis (DIVA), which does not incorporate branch lengths but accounts for phylogenetic uncertainty through a Bayesian empirical approach (Bayes-DIVA). We analyse the benefits and limitations of each method using the cosmopolitan plant family Sapindaceae as a case study.Location World-wide.Methods Phylogenetic relationships were estimated by Bayesian inference on a large dataset representing generic diversity within Sapindaceae. Lineage divergence times were estimated by penalized likelihood over a sample of trees from the posterior distribution of the phylogeny to account for dating uncertainty in biogeographical reconstructions. We compared biogeographical scenarios between Bayes-DIVA and two different DEC models: one with no geological constraints and another that employed a stratified palaeogeographical model in which dispersal rates were scaled according to area connectivity across four time slices, reflecting the changing continental configuration over the last 110 million years.Results Despite differences in the underlying biogeographical model, Bayes-DIVA and DEC inferred similar biogeographical scenarios. The main differences were: (1) in the timing of dispersal events - which in Bayes-DIVA sometimes conflicts with palaeogeographical information, and (2) in the lower frequency of terminal dispersal events inferred by DEC. Uncertainty in divergence time estimations influenced both the inference of ancestral ranges and the decisiveness with which an area can be assigned to a node.Main conclusions By considering lineage divergence times, the DEC method gives more accurate reconstructions that are in agreement with palaeogeographical evidence. In contrast, Bayes-DIVA showed the highest decisiveness in unequivocally reconstructing ancestral ranges, probably reflecting its ability to integrate phylogenetic uncertainty. Care should be taken in defining the palaeogeographical model in DEC because of the possibility of overestimating the frequency of extinction events, or of inferring ancestral ranges that are outside the extant species ranges, owing to dispersal constraints enforced by the model. The wide-spanning spatial and temporal model proposed here could prove useful for testing large-scale biogeographical patterns in plants.
Resumo:
The utility of sequencing a second highly variable locus in addition to the spa gene (e.g., double-locus sequence typing [DLST]) was investigated to overcome limitations of a Staphylococcus aureus single-locus typing method. Although adding a second locus seemed to increase discriminatory power, it was not sufficient to definitively infer evolutionary relationships within a single multilocus sequence type (ST-5).
Resumo:
Abstract Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
Epidemiological processes leave a fingerprint in the pattern of genetic structure of virus populations. Here, we provide a new method to infer epidemiological parameters directly from viral sequence data. The method is based on phylogenetic analysis using a birth-death model (BDM) rather than the commonly used coalescent as the model for the epidemiological transmission of the pathogen. Using the BDM has the advantage that transmission and death rates are estimated independently and therefore enables for the first time the estimation of the basic reproductive number of the pathogen using only sequence data, without further assumptions like the average duration of infection. We apply the method to genetic data of the HIV-1 epidemic in Switzerland.