716 resultados para pacs: mathematical computing
Resumo:
In this action research study of my classroom of 8th grade mathematics, I investigated the influence of vocabulary instruction on students’ understanding of the mathematics concepts. I discovered that knowing the meaning of the vocabulary did play a major role in the students’ understanding of the daily lessons and the ability to take tests. Understanding the vocabulary and the concepts allowed the students to be successful on their daily assignments, chapter tests, and standardized achievement tests. I also discovered that using different vocabulary teaching strategies enhanced equity in my classroom among diverse learners. The knowledge of the math vocabulary increased my students’ confidence levels, which in turn increased their daily and test scores. As a result of this research, I plan to find ways to incorporate the vocabulary teaching strategies I have used into current math curriculum. I will start this process at the beginning of the next school year, and will continue looking for new strategies that will promote math vocabulary retention.
Resumo:
In this action research study of my sixth grade mathematics class, I investigated the influence a change in my questioning tactics would have on students’ ability to determine answer reasonability to mathematics problems. During the course of my research, students were asked to explain their problem solving and solutions. Students, amongst themselves, discussed solutions given by their peers and the reasonability of those solutions. They also completed daily questionnaires that inquired about my questioning practices, and 10 students were randomly chosen to be interviewed regarding their problem solving strategies. I discovered that by placing more emphasis on the process rather than the product, students became used to questioning problem solving strategies and explaining their reasoning. I plan to maintain this practice in the future while incorporating more visual and textual explanations to support verbal explanations.
Resumo:
In this action research study of my classroom of 8th grade mathematics, I investigated the use of daily warm-ups written in problem-solving format. Data was collected to determine if use of such warm-ups would have an effect on students’ abilities to problem solve, their overall attitudes regarding problem solving and whether such an activity could also enhance their readiness each day to learn new mathematics concepts. It was also my hope that this practice would have some positive impact on maximizing the amount of time I have with my students for math instruction. I discovered that daily exposure to problem-solving practices did impact the students’ overall abilities and achievement (though sometimes not positively) and similarly the students’ attitudes showed slight changes as well. It certainly seemed to improve their readiness for the day’s lesson as class started in a more timely manner and students were more actively involved in learning mathematics (or perhaps working on mathematics) than other classes not involved in the research. As a result of this study, I plan to continue using daily warm-ups and problem-solving (perhaps on a less formal or regimented level) and continue gathering data to further determine if this methodology can be useful in improving students’ overall mathematical skills, abilities and achievement.
Resumo:
OBJECTIVES: Hemodynamic support is aimed at providing adequate O-2 delivery to the tissues; most interventions target O-2 delivery increase. Mixed venous O-2 saturation is a frequently used parameter to evaluate the adequacy of O-2 delivery. METHODS: We describe a mathematical model to compare the effects of increasing O-2 delivery on venous oxygen saturation through increases in the inspired O-2 fraction versus increases in cardiac output. The model was created based on the lungs, which were divided into shunted and non-shunted areas, and on seven peripheral compartments, each with normal values of perfusion, optimal oxygen consumption, and critical O-2 extraction rate. O-2 delivery was increased by changing the inspired fraction of oxygen from 0.21 to 1.0 in steps of 0.1 under conditions of low (2.0 L.min(-1)) or normal (6.5 L.min(-1)) cardiac output. The same O-2 delivery values were also obtained by maintaining a fixed O-2 inspired fraction value of 0.21 while changing cardiac output. RESULTS: Venous oxygen saturation was higher when produced through increases in inspired O-2 fraction versus increases in cardiac output, even at the same O-2 delivery and consumption values. Specifically, at high inspired O-2 fractions, the measured O-2 saturation values failed to detect conditions of low oxygen supply. CONCLUSIONS: The mode of O-2 delivery optimization, specifically increases in the fraction of inspired oxygen versus increases in cardiac output, can compromise the capability of the "venous O-2 saturation" parameter to measure the adequacy of oxygen supply. Consequently, venous saturation at high inspired O-2 fractions should be interpreted with caution.
Resumo:
This paper proposes an evolutionary computing strategy to solve the problem of fault indicator (FI) placement in primary distribution feeders. More specifically, a genetic algorithm (GA) is employed to search for an efficient configuration of FIs, located at the best positions on the main feeder of a real-life distribution system. Thus, the problem is modeled as one of optimization, aimed at improving the distribution reliability indices, while, at the same time, finding the least expensive solution. Based on actual data, the results confirm the efficiency of the GA approach to the FI placement problem.
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
This work presents major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.
Resumo:
The development of cloud computing services is speeding up the rate in which the organizations outsource their computational services or sell their idle computational resources. Even though migrating to the cloud remains a tempting trend from a financial perspective, there are several other aspects that must be taken into account by companies before they decide to do so. One of the most important aspect refers to security: while some cloud computing security issues are inherited from the solutions adopted to create such services, many new security questions that are particular to these solutions also arise, including those related to how the services are organized and which kind of service/data can be placed in the cloud. Aiming to give a better understanding of this complex scenario, in this article we identify and classify the main security concerns and solutions in cloud computing, and propose a taxonomy of security in cloud computing, giving an overview of the current status of security in this emerging technology.