967 resultados para digital simulation
Resumo:
Now as in earlier periods of acute change in the media environment, new disciplinary articulations are producing new methods for media and communication research. At the same time, established media and communication studies meth- ods are being recombined, reconfigured, and remediated alongside their objects of study. This special issue of JOBEM seeks to explore the conceptual, political, and practical aspects of emerging methods for digital media research. It does so at the conjuncture of a number of important contemporary trends: the rise of a ‘‘third wave’’ of the Digital Humanities and the ‘‘computational turn’’ (Berry, 2011) associated with natively digital objects and the methods for studying them; the apparently ubiquitous Big Data paradigm—with its various manifestations across academia, business, and government — that brings with it a rapidly increasing interest in social media communication and online ‘‘behavior’’ from the ‘‘hard’’ sciences; along with the multisited, embodied, and emplaced nature of everyday digital media practice.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper presents a finite-element study simulating the deflection of seat cushion foam and supportive seat structures, as well as human buttock and thigh soft tissue when seated. The three-dimensional data used for modelling thigh and buttock geometry were taken on one 95th percentile male subject, representing the bivariate percentiles of the combined hip breadth (seated) and buttock-to-knee length distributions of a selected Australian and US population. A thigh-buttock surface shell based on this data was generated for the analytic model. A 6mm neoprene layer was offset from the shell to account for the compression of body tissue expected through sitting in a seat. The thigh-buttock model is therefore made of two layers, covering thin to moderate thigh and buttock proportions, but not more fleshy sizes. To replicate the effects of skin and fat, the neoprene rubber layer was modelled as a hyperelastic material with viscoelastic behaviour in a Neo-Hookean material model. Finite element (FE) analysis was performed in ANSYS V13 WB (Canonsburg, USA). It is hypothesized that the presented FE simulation delivers a valid result, compared to a standard SAE physical test and the real phenomenon of human-seat indentation. The analytical model is based on the CAD assembly of a Ford Territory seat. The optimized seat frame, suspension and foam pad CAD data were transformed and meshed into FE models and indented by the two layer, soft surface human FE model. Converging results with the least computational effort were achieved for a bonded connection between cushion and seat base as well as cushion and suspension, no separation between neoprene and indenter shell and a frictional connection between cushion pad and neoprene. The result is compared to a previous simulation of an indentation with a hard shell human finite-element model of equal geometry, and to the physical indentation result, which is approached with very high fidelity. We conclude that (a) SAE composite buttock form indentation of a suspended seat cushion can be validly simulated in a FE model of merely similar geometry, but using a two-layer hard/soft structure. (b) Human-seat indentation of a suspended seat cushion can be validly simulated with a simplified human buttock-thigh model for a selected anthropomorphism.
Resumo:
This dissertation analyses how physical objects are translated into digital artworks using techniques which can lead to ‘imperfections’ in the resulting digital artwork that are typically removed to arrive at a ‘perfect’ final representation. The dissertation discusses the adaptation of existing techniques into an artistic workflow that acknowledges and incorporates the imperfections of translation into the final pieces. It presents an exploration of the relationship between physical and digital artefacts and the processes used to move between the two. The work explores the 'craft' of digital sculpting and the technology used in producing what the artist terms ‘a naturally imperfect form’, incorporating knowledge of traditional sculpture, an understanding of anatomy and an interest in the study of bones (Osteology). The outcomes of the research are presented as a series of digital sculptural works, exhibited as a collection of curiosities in multiple mediums, including interactive game spaces, augmented reality (AR), rapid prototype prints (RP) and video displays.
Resumo:
Video presented as part of Melbourne Smart Services CRC Participants conferences. Video showing the results of our collaboration with the Smart Services CRC and Austin Health. We created an environment for nurses to learn ICU Handover processes. Handover processes in an ICU involve, briefing meetings with ward nurses, and then a bedside handover of patient care information to the nurse starting the next shift. This simulation will allow students to remotely practice their handover skills, thus freeing up expensive resources at teaching hospitals, and enabling them to be at a higher skill level when they commence live training. More information available at: www.bpmve.org.
Resumo:
This thesis investigates the role of personal Digital Stories shared in public spaces as catalysts for social change. By analysing the influence of workshop facilitators, organisations, digital platforms and networked publics on voice and self-representation, it sheds light on shifting meanings of publicness and privacy, both face to face and online. This thesis argues that, despite numerous obstacles, the cumulative influence of diverse voices dispersed among networked publics shape new cultural norms, thereby contributing to gradual social change.
Resumo:
Deterministic computer simulation of physical experiments is now a common technique in science and engineering. Often, physical experiments are too time consuming, expensive or impossible to conduct. Complex computer models or codes, rather than physical experiments lead to the study of computer experiments, which are used to investigate many scientific phenomena. A computer experiment consists of a number of runs of the computer code with different input choices. The Design and Analysis of Computer Experiments is a rapidly growing technique in statistical experimental design. This paper aims to discuss some practical issues when designing a computer simulation and/or experiments for manufacturing systems. A case study approach is reviewed and presented.
Resumo:
We argue that there are at least two significant issues for interaction designers to consider when creating the next generation of human interfaces for civic and urban engagement: (1) The disconnect between citizens participating in either digital or physical realms has resulted in a neglect of the hybrid role that public place and situated technology can play in contributing to civic innovation. (2) Under the veneer of many social media tools, hardly any meaningful strategies or approaches are found that go beyond awareness raising and allow citizens to do more than clicking a ‘Like’ button. We call for an agenda to design the next generation of ‘digital soapboxes’ that contributes towards a new form of polity helping citizens not only to have a voice but also to appropriate their city in order to take action for change.
Resumo:
The research investigated women’s participation in the Australian Digital Content Industry, which encompasses both multimedia and games production. The Digital Content Industry is an area of growing economic and social significance, both in Australia and internationally. Women are under-represented in core Digital Content Industry work but there has been little theoretical or empirical investigation of the underlying issues. This research identified a range of influences on women’s participation and provides a better understanding of this complex social phenomenon by proposing that influences should be understood from the perspective of agent-driven mechanisms. The key contribution is a new theory - the Acts of Agency Theory - which was used to discuss the phenomenon and issues underpinning women’s participation and to recommend strategies that should foster greater participation of women in the Digital Content Industry.
Resumo:
In this paper, the initial stage of films assembled by energetic C36 fullerenes on diamond (001)–(2 × 1) surface at low-temperature was investigated by molecular dynamics simulation using the Brenner potential. The incident energy was first uniformly distributed within an energy interval 20–50 eV, which was known to be the optimum energy range for chemisorption of single C36 on diamond (001) surface. More than one hundred C36 cages were impacted one after the other onto the diamond surface by randomly selecting their orientation as well as the impact position relative to the surface. The growth of films was found to be in three-dimensional island mode, where the deposited C36 acted as building blocks. The study of film morphology shows that it retains the structure of a free C36 cage, which is consistent with Low Energy Cluster Beam Deposition (LECBD) experiments. The adlayer is composed of many C36-monomers as well as the covalently bonded C36 dimers and trimers which is quite different from that of C20 fullerene-assembled film, where a big polymerlike chain was observed due to the stronger interaction between C20 cages. In addition, the chemisorption probability of C36 fullerenes is decreased with increasing coverage because the interaction between these clusters is weaker than that between the cluster and the surface. When the incident energy is increased to 40–65 eV, the chemisorption probability is found to increased and more dimers and trimers as well as polymerlike-C36 were observed on the deposited films. Furthermore, C36 film also showed high thermal stability even when the temperature was raised to 1500 K.
Resumo:
The deposition of small metal clusters (Cu, Au and Al) on f.c.c. metals (Cu, Au and Ni) has been studied by molecular dynamics simulation using Finnis–Sinclair (FS) potential. The impact energy varied from 0.01 to 10 eV/atom. First, the deposition of single cluster was simulated. We observed that, even at much lower energy, a small cluster with (Ih) icosahedral symmetry was reconstructed to match the substrate structure (f.c.c.) after deposition. Next, clusters were modeled to drop, one after the other, on the surface. The nanostructure was found by soft landing of Au clusters on Cu with increasing coverage, where interfacial energy dominates. While at relatively higher deposition energy (a few eV), the ordered f.c.c.-like structure was observed in the first adlayer of the film formed by Al clusters depositing on Ni substrate. This characteristic is mainly attributive to the ballistic collision. Our results indicate that the surface morphology synthesized by cluster deposition could be controlled by experimental parameters, which will be helpful for controlled design of nanostructure.
Resumo:
Literacy educator Kathy Mills, observes that creating multimodal and digital texts is an essential part of the national English curriculum in Australia. Here, she presents five practical and engaging ways to transform conventional writing tasks in a digital world.
Resumo:
Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.