934 resultados para capacitive cooling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiencies in sardine post-harvest handling methods were seen as major impediments to development of a value-adding sector supplying Australian bait and human consumption markets. Factors affecting sardine deterioration rates in the immediate post-harvest period were investigated and recommendations made for alternative handling procedures to optimise sardine quality. Net to factory sampling showed that post-mortem autolysis was probably caused by digestive enzyme activity contributing to the observed temporal increase in sardine Quality Index. Belly burst was not an issue. Sardine quality could be maintained by reducing tank loading, and rapid temperature reduction using dedicated, on-board value-adding tanks. Fish should be iced between the jetty and the processing factory, and transport bins chilled using an efficient cooling medium such as flow ice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artist statement – Artisan Gallery I have a confession to make… I don’t wear a FitBit, I don’t want an Apple Watch and I don’t like bling LED’s. But, what excites me is a future where ‘wearables’ are discreet, seamless and potentially one with our body. Burgeoning E-textiles research will provide the ability to inconspicuously communicate, measure and enhance human health and well-being. Alongside this, next generation wearables arguably will not be worn on the body, but rather within the body…under the skin. ‘Under the Skin’ is a polemic piece provoking debate on the future of wearables – a place where they are not overt, not auxiliary and perhaps not apparent. Indeed, a future where wearables are under the skin or one with our apparel. And, as underwear closets the skin and is the most intimate and cloaked apparel item we wear, this work unashamedly teases dialogue to explore how wearables can transcend from the overt to the unseen. Context Wearable Technology, also referred to as wearable computing or ‘wearables’, is an embryonic field that has the potential to unsettle conventional notions as to how technology can interact, enhance and augment the human body. Wearable technology is the next-generation for ubiquitous consumer electronics and ‘Wearables’ are, in essence, miniature electronic devices that are worn by a person, under clothing, embedded within clothing/textiles, on top of clothing, or as stand-alone accessories/devices. This wearables market is predicted to grow somewhere between $30-$50 billion in the next 5 years (Credit Suisse, 2013). The global ‘wearables’ market, which is emergent in phase, has forecasted predictions for vast consumer revenue with the potential to become a significant cross-disciplinary disruptive space for designers and entrepreneurs. For Fashion, the field of wearables is arguably at the intersection of the second and third generation for design innovation: the first phase being purely decorative with aspects such as LED lighting; the second phase consisting of an array of wearable devices, such as smart watches, to communicate areas such as health and fitness, the third phase involving smart electronics that are woven into the textile to perform a vast range of functions such as body cooling, fabric colour change or garment silhouette change; and the fourth phase where wearable devices are surgically implanted under the skin to augment, transform and enhance the human body. Whilst it is acknowledged the wearable phases are neither clear-cut nor discreet in progression and design innovation can still be achieved with first generation decorative approaches, the later generation of technology that is less overt and at times ‘under the skin’ provides a uniquely rich point for design innovation where the body and technology intersect as one. With this context in mind, the wearable provocation piece ‘Under the Skin’ provides a unique opportunity for the audience to question and challenge conventional notions that wearables need to be a: manifest in nature, b: worn on or next to the body, and c: purely functional. The piece ‘Under the Skin’ is informed by advances in the market place for wearable innovation, such as: the Australian based wearable design firm Catapult with their discreet textile biometric sports tracking innovation, French based Spinali Design with their UV app based textile senor to provide sunburn alerts, as well as opportunities for design technology innovation through UNICEF’s ‘Wearables for Good’ design challenge to improve the quality of life in disadvantaged communities. Exhibition As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mangoes can express several skin disorders following important postharvest treatments. Responses are often cultivar specific. This paper reports the responses of two new Australian mango cultivars to some of these treatments. 'Honey Gold' mango develops "under skin browning" early during cold storage. This is thought to be partly caused by a discolouration of the latex vessels which then spreads to the surrounding cells. The symptoms appear to be worse in fruit from hotter production areas and that have been cooled to temperatures below 18C soon after harvest. Current commercial recommendations are to cool fruit to 18C, which limits postharvest handling options. Recent trials have confirmed that delayed or slowed cooling after harvest can reduce under skin browning. The defect may also be associated with physical injury to the skin during harvesting and packing. Irradiation is potentially an important disinfestation treatment for fruit fly in Australian mangoes. The 'B74' mango cultivar develops significant skin damage following irradiation, mainly due to discolouration of the cells surrounding the lenticels. Recent results confirmed that fruit harvested directly from the tree into trays without exposure to water or postharvest chemicals are not damaged by irradiation, while commercially harvested and packed fruit are damaged. Several major harvest and postharvest steps appear to increase lenticel sensitivity to irradiation. Further work is required to develop commercially acceptable protocols to facilitate 'Honey Gold' and 'B74' mango distribution and marketing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strategic objectives of Turf Australia (formerly the Turf Producers Association (TPA)) relating to water use in turf are to: • Source and collate information to support the case for adequate access to water for the Turf production and maintenance sectors and • Compile information generated into a convincing communication package that can be readily used by the industry in its advocacy programs (to government, regulators, media etc) More specifically, the turfgrass industry needs unbiased scientific evidence of the value of healthy grass in our environment. It needs to promote the use of adequate water even during drought periods to maintain quality turfgrass, which provides many benefits to the broader community including cooling the environment, saving energy and encouraging healthy lifestyles. The many environmental, social and health benefits of living turfgrass have been the subject of numerous investigations beyond the scope of this review. However further research is needed to fully understand the economic returns achievable by the judicious use of water for the maintenance of healthy turfgrass. Consumer education, backed by scientific evidence will highlight the “false economy” in allowing turfgrass to wither and die during conditions which require high level water restrictions. This report presents a review of the literature pertaining to research in the field of turf water use. The purpose of the review was to better understand the scope and nature of existing research results on turf water relations so that knowledge gaps could be identified in achieving the above strategic objectives of the TPA. Research to date has been found to be insufficient to compile a convincing communication package as described. However, identified knowledge gaps can now be addressed through targeted research. Information derived from targeted research will provide valuable material for education of the end user of turfgrass. Recommendations have been developed, based on the results of this desktop review. It was determined that future research in the field of turf irrigation needs to focus on a number of key factors which directly or indirectly affect the relationship between turfgrass and water use. These factors are: • Climate • Cultivar • Quality • Site use requirements • Establishment and management The overarching recommendation is to develop a strategic plan for turfgrass water relations research based around the five determinants of turf water use listed above. This plan should ensure research under these five categories is integrated into a holistic approach by which the consumer can be guided in species and/or cultivar choices as well as best management practices with respect to turfgrass water relations. Worsening drought cycles and limited supply of water for irrigation were the key factors driving every research project reviewed in this report. Subsidence of the most recent (or current) drought conditions in Australia should not be viewed by the turf industry as a reason to withdraw support or funding for research in this area. Drought conditions, limited domestic water availability and urban water restrictions will return in Australia albeit in 5, 10 or 20 years time and the turf industry has an opportunity to prepare for that time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid solidification of Ti-7.3wt.%Cu (near-eutectoid composition), Ti-36.2wt.%Ni and Ti-34.3wt.% Ni-5.8wt.%Si alloys has been carried out by electron beam melting and splat quenching on a water-cooled rotating copper disc. The product obtained was in the form of thin ribbons 60–100 μm thick. Transmission electron microscopy studies of Ti---Cu alloy splats showed that the microstructure consisted of a mixture of martensite and a lamellar eutectoid product. The formation of the intermetallic compound Ti2Cu involved a diffusionless ω transformation and spinodal clustering. In the case of Ti---Ni alloy the as-quenched microstructure is complex, consisting of α, transformed β and intermetallic phases. This could have arisen possibly as a result of local variation in cooling rates. Rapid solidification of Ti---Ni---Si alloy resulted in partial quenching of an amorphous phase. The amorphous phase was seen to be extremely hard (a Vickers hardness of about 800 HV).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The garnet-kyanite-staurolite and garnet-biotite-staurolite gneisses were collected from a locality within Lukung area that belongs to the Pangong metamorphic complex in Shyok valley, Ladakh Himalaya. The kyanite-free samples have garnet and staurolite in equilibrium, where garnets show euhedral texture and have flat compositional profile. On the other hand, the kyanite-bearing sample shows equilibrium assemblage of garnet-kyanite-staurolite along with muscovite and biotite. In this case, garnet has an inclusion rich core with a distinct grain boundary, which was later overgrown by inclusion free euhedral garnet. Garnet cores are rich in Mn and Ca, while the rims are poor in Mn and rich in Fe and Mg, suggesting two distinct generations of growth. However, the compositional profiles and textural signature of garnets suggests the same stage of P -T evolution for the formation of the inclusion free euhedral garnets in the kyanite-free gneisses and the inclusion free euhedral garnet rims in the kyanite-bearing gneiss. Muscovites from the four samples have consistent K-Ar ages, suggesting the cooling age (∼ 10 Ma) of the gneisses. These ages make a constraint on the timing of the youngest post-collision metamorphic event that may be closely related to an activation of the Karakoram fault in Pangong metamorphic complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosecurity problem addressed was the need to understand and evaluate phosphine fumigation of cool grain (i.e. 20°C or less) as a means of controlling resistant biotypes of insect pests of stored grain which are major EPPs threatening the grain industry. The benefits of cooling and phosphine fumigation are that cooling preserves grain quality and reduces insect population growth, and phosphine kills insects and has a residue free status in all major markets. The research objectives were to: - conduct laboratory experiments on phosphine efficacy against resistant insects in cool grain, and determine times to population extinction. - conduct laboratory experiments on phosphine sorption in cool grain and quantify. - complete fumigation trials in three states (Queensland, WA and NSW) on cool grain stored insealed farm silos. - make recommendations for industry on effective phosphine fumigation of cool grain. Phosphine is used by growers and other stakeholders in the grain industry to meet domesticand international demands for insect-free grain. The project aim was to generate new information on the performance of phosphine fumigation of cool grain relevant to resistant biotypes. Effective control of resistant biotypes using phosphine to fumigate cool grain will benefit growers and other sectors of the grain industry, needing to fumigate grain in the cooler months of the year, or grain that has been cooled using aeration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Octahedral Co2+ centers have been connected by mu(3)-OH and mu(2)-OH2 units forming [Co-4] clusters which are linked by pyrazine forming a two-dimensional network. The two-dimensional layers are bridged by oxybisbenzoate (OBA) ligands giving rise to a three-dimensional structure. The [Co-4] clusters bond with the pyrazine and the OBA results in a body-centered arrangement of the clusters, which has been observed for the first time. Magnetic studies reveal a noncollinear frustrated spin structure of the bitriangular cluster, resulting in a net magnetic moment of 1.4 mu B per cluster. For T > 32 K, the correlation length of the cluster moments shows a stretched-exponential temperature dependence typical of a Berezinskii-Kosterlitz-Thouless model, which points to a quasi-2D XY behavior. At lower temperature and down to 14 K, the compound behaves as a soft ferromagnet and a slow relaxation is observed, with an energy barrier of ca. 500 K. Then, on further cooling, a hysteretic behavior takes place with a coercive field that reaches 5 Tat 4 K. The slow relaxation is assigned to the creation/annihilation of vortex-antivortex pairs, which are the elementary excitations of a 2D XY spin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma polymerized c-terpinene (pp2GT) thin films are fabricated using RF plasma polymerization. MIM structures are fabricated and using the capacitive structures dielectric properties of the material is studied. The dielectric constant values are found to be in good agreement with those determined from ellipsometric data. At a frequency of 100 kHz, the dielectric constant varies with RF deposition power, from 3.69 (10 W) to 3.24 (75 W). The current density–voltage (J2V) characteristics of pp–GT thin films are investigated as a function of RF deposition power at room temperature to determine the resistivity and DC conduction mechanism of the films. At higher applied voltage region, Schottky conduction is the dominant DC conduction mechanism. The capacitance and the loss tangent are found to be frequency dependent. The conductivity of the pp2GT thin films is found to decrease from 1.39 3 10212 S/cm (10 W) to 1.02 3 10213 S/cm (75 W) and attributed to the change in the chemical composition and structure of the polymer. The breakdown field for pp–GT thin films increases from 1.48 MV/cm (10 W) to 2 MV/cm (75 W). A single broad relaxation peak is observed indicating the contribution of multiple relaxations to the dielectric response for temperature dependent J2V. The distribution of these relaxation times is determined through regularization methods. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42318.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases, EC 3.6.1.1) hydrolyse pyrophosphate in a reaction that provides the thermodynamic 'push' for many reactions in the cell, including DNA and protein synthesis. Soluble PPases can be classified into two families that differ completely in both sequence and structure. While Family I PPases are found in all kingdoms, family II PPases occur only in certain prokaryotes. The enzyme from baker's yeast (Saccharomyces cerevisiae) is very well characterised both kinetically and structurally, but the exact mechanism has remained elusive. The enzyme uses divalent cations as cofactors; in vivo the metal is magnesium. Two metals are permanently bound to the enzyme, while two come with the substrate. The reaction cycle involves the activation of the nucleophilic oxygen and allows different pathways for product release. In this thesis I have solved the crystal structures of wild type yeast PPase and seven active site variants in the presence of the native cofactor magnesium. These structures explain the effects of the mutations and have allowed me to describe each intermediate along the catalytic pathway with a structure. Although establishing the ʻchoreographyʼ of the heavy atoms is an important step in understanding the mechanism, hydrogen atoms are crucial for the mechanism. The most unambiguous method to determine the positions of these hydrogen atoms is neutron crystallography. In order to determine the neutron structure of yeast PPase I perdeuterated the enzyme and grew large crystals of it. Since the crystals were not stable at ambient temperature, a cooling device was developed to allow neutron data collection. In order to investigate the structural changes during the reaction in real time by time-resolved crystallography a photolysable substrate precursor is needed. I synthesised a candidate molecule and characterised its photolysis kinetics, but unfortunately it is hydrolysed by both yeast and Thermotoga maritima PPases. The mechanism of Family II PPases is subtly different from Family I. The native metal cofactor is manganese instead of magnesium, but the metal activation is more complex because the metal ions that arrive with the substrate are magnesium different from those permanently bound to the enzyme. I determined the crystal structures of wild type Bacillus subtilis PPase with the inhibitor imidodiphosphate and an inactive H98Q variant with the substrate pyrophosphate. These structures revealed a new trimetal site that activates the nucleophile. I also determined that the metal ion sites were partially occupied by manganese and iron using anomalous X- ray scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.