3 resultados para capacitive cooling

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optomechanical interaction is an extremely powerful tool with which to measure mechanical motion. The displacement resolution of chip-scale optomechanical systems has been measured on the order of 1⁄10th of a proton radius. So strong is this optomechanical interaction that it has recently been used to remove almost all thermal noise from a mechanical resonator and observe its quantum ground-state of motion starting from cryogenic temperatures.

In this work, chapter 1 describes the basic physics of the canonical optomechanical system, optical measurement techniques, and how the optomechanical interaction affects the coupled mechanical resonator. In chapter 2, we describe our techniques for realizing this canonical optomechanical system in a chip-scale form factor.

In chapter 3, we describe an experiment where we used radiation pressure feedback to cool a mesoscopic mechanical resonator near its quantum ground-state from room-temperature. We cooled the resonator from a room temperature phonon occupation of <n> = 6.5 million to an occupation of <n> = 66, which means the resonator is in its ground state approximately 2% of the time, while being coupled to a room-temperature thermal environment. At the time of this work, this is the closest a mesoscopic mechanical resonator has been to its ground-state of motion at room temperature, and this work begins to open the door to room-temperature quantum control of mechanical objects.

Chapter 4 begins with the realization that the displacement resolutions achieved by optomechanical systems can surpass those of conventional MEMS sensors by an order of magnitude or more. This provides the motivation to develop and calibrate an optomechanical accelerometer with a resolution of approximately 10 micro-g/rt-Hz over a bandwidth of approximately 30 kHz. In chapter 5, we improve upon the performance and practicality of this sensor by greatly increasing the test mass size, investigating and reducing low-frequency noise, and incorporating more robust optical coupling techniques and capacitive wavelength tuning. Finally, in chapter 6 we present our progress towards developing another optomechanical inertial sensor - a gyroscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light has long been used for the precise measurement of moving bodies, but the burgeoning field of optomechanics is concerned with the interaction of light and matter in a regime where the typically weak radiation pressure force of light is able to push back on the moving object. This field began with the realization in the late 1960's that the momentum imparted by a recoiling photon on a mirror would place fundamental limits on the smallest measurable displacement of that mirror. This coupling between the frequency of light and the motion of a mechanical object does much more than simply add noise, however. It has been used to cool objects to their quantum ground state, demonstrate electromagnetically-induced-transparency, and modify the damping and spring constant of the resonator. Amazingly, these radiation pressure effects have now been demonstrated in systems ranging 18 orders of magnitude in mass (kg to fg).

In this work we will focus on three diverse experiments in three different optomechanical devices which span the fields of inertial sensors, closed-loop feedback, and nonlinear dynamics. The mechanical elements presented cover 6 orders of magnitude in mass (ng to fg), but they all employ nano-scale photonic crystals to trap light and resonantly enhance the light-matter interaction. In the first experiment we take advantage of the sub-femtometer displacement resolution of our photonic crystals to demonstrate a sensitive chip-scale optical accelerometer with a kHz-frequency mechanical resonator. This sensor has a noise density of approximately 10 micro-g/rt-Hz over a useable bandwidth of approximately 20 kHz and we demonstrate at least 50 dB of linear dynamic sensor range. We also discuss methods to further improve performance of this device by a factor of 10.

In the second experiment, we used a closed-loop measurement and feedback system to damp and cool a room-temperature MHz-frequency mechanical oscillator from a phonon occupation of 6.5 million down to just 66. At the time of the experiment, this represented a world-record result for the laser cooling of a macroscopic mechanical element without the aid of cryogenic pre-cooling. Furthermore, this closed-loop damping yields a high-resolution force sensor with a practical bandwidth of 200 kHZ and the method has applications to other optomechanical sensors.

The final experiment contains results from a GHz-frequency mechanical resonator in a regime where the nonlinearity of the radiation-pressure interaction dominates the system dynamics. In this device we show self-oscillations of the mechanical element that are driven by multi-photon-phonon scattering. Control of the system allows us to initialize the mechanical oscillator into a stable high-amplitude attractor which would otherwise be inaccessible. To provide context, we begin this work by first presenting an intuitive overview of optomechanical systems and then providing an extended discussion of the principles underlying the design and fabrication of our optomechanical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.

A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.