999 resultados para Spin tunneling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the sequential resonant tunneling of doped weakly coupled GaAs/AlAs superlattices under hydrostatic pressure up to 4.5 kbar. The pressure coefficient obtained from the experiment, 15.3 meV/kbar, provides a strong evidence for the formation of the electric field domain due to Gamma-X sequential resonant tunneling, At the same time, we have observed the transition between two kinds of sequential resonant tunneling processes within the pressure range from 0 to 4.5 kbar, where the transition pressure between Gamma-Gamma and Gamma-X sequential resonant tunneling is P-t similar to 1.6 kbar. For P < P-t, the electric field domain is formed by Gamma-Gamma sequential resonant tunneling, while for P > P-t, the electric field domain is preferably formed by Gamma-X sequential resonant tunneling. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge build-up process in the emitter of a double-barrier resonant tunneling structure is studied by using photoluminescence spectroscopy. Clear evidence is obtained that the charge accumulation in the emitter keeps almost constant with bias voltages in the resonant regime, while it increases remarkably with bias voltages beyond resonant regime. The optical results are in good agreement with the electrical measurement. It is demonstrated that the band gap renormalization plays a certain rob in the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transition layer model is proposed and used to calculate resonant tunneling in a double-barrier quantum well system. Compared with the ideal step of the potential at the interface, the studied system has transition layers that are composed by many thin rectangular barriers with a random height. It is found that these transition layers can improve the peak-to-valley ratio of the tunneling current and change the negative differential conductance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By considering the time variation of band-edge profile arising from the decay of injected charge in quantum wells(QWs), we employ a wave packet method to verify that the actual escape time of certain amount of electrons from QWs could be much larger than that for a single electron. The theoretical result is also in agreement with our measurement of escape time, performed by using a newly developed method--transient current response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal population in photocarrier systems coupled by hole mixing tunneling is studied by an analysis of the high energy tails in cw photoluminescence spectra of asymmetric coupled double wells. Photocarriers in wide well are heated due to hole transfer from the narrow well through resonant tunneling as well as by photon heating. The influences of the excitation intensity and lattice temperature on the tunneling transfer and thermal population are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated In_0.53Ga_0.47As/AlAs/InP resonant tunneling diodes (RTDs) based on the air-bridge technology by using electron beam lithography processing.The epitaxial layers of the RTD were grown on semi-insulating (100) InP substrates by molecular beam epitaxy.RTDs with a peak current density of 24.6 kA/cm~2 and a peak-to-valley current ratio of 8.6 at room temperature have been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel edge-triggered D-flip-flop based on a resonant tunneling diode (RTD) is proposed and used to construct a binary frequency divider. The design is discussed in detail and the performance of the circuit is verified using SPICE. Relying on the nonlinear characteristics of RTD, we reduced the number of components used in our DFF circuit to only half of that required using conventional CMOS SCFL technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2:1 with a peak current density of 22.5kA/cm~2. The HEMT has a 1μm gate length with a-1V threshold voltage. A logic circuit called a monostableto-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new material structure with Al0.22Ga(>. 78 As/Ino.i5 Gao.ss As/GaAs emitter spacer layer and GaAs/Ino.15-Gao.8ii As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio and the available current density for RTDs at room temperature are computed. Analysis on these results suggests that adjusting material structure and optimizing fabrication processes will be an effective means to improve the quality of RTDs.