867 resultados para SUPRAMOLECULAR ISOMERISM
Resumo:
This work deals with the synthesis, spectroscopic and structural investigation of pyrazolyl complexes of the type trans-[M(NCS)(2)(HPz)(4)] {M=Co (1), Ni (2); HPz=pyrazole}. Single crystal X-ray studies on 1 and 2 reveal the formation of similar supramolecular arrangements derived from self-assembly of monomers linked together through intermolecular N-H center dot center dot center dot SCN hydrogen bonds, C-H center dot center dot center dot pi interactions and pi-pi stacking. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two binuclear cyclometallated compounds [Pd(C-2,N-dmba)(mu-N-3)](2) (1) and [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] (2) (dmba = N,N-dimethylbenzylarnine) have been synthesized and characterized by elemental 3 analysis, IR and NMR spectroscopies and single crystal X-ray diffraction crystallography. The ability of CH3 groups to form C(sp(3))-H...pi hydrogen bonds with phenyl rings is responsible for the molecular self-assembly within the crystals of 1 and 2. Compound 1 crystallizes as one-dimensional supramolecular chains whereas the crystal packing of 2 consists of a herringbone of sandwiches composed by two inversely related [Pd-2(C-2,N-dmba)(2)(mu-N-3)(mu-Cl)] molecules. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tellurium tetrachloride adds to alkynes via two pathways: a concerted syn addition, that yields Z-tri- and tetra-substituted alkenes or by an anti addition that yields E-alkenes. The mechanistic aspects of these divergent pathways have been reevaluated at the light of crystallographic data. The molecules, of the title compound, in the crystal, are associated in a helical fashion with a Te...Te pitch of 6.3492(6) angstrom. As it exhibits inhibitory activity for cathepsin B and in order to gain more insight of the inhibition mechanism, a docking study was undertaken providing insight on why organic telluranes are more efficient inhibitors than inorganic ones as AS-101. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Supramolecular structures of polyaniline (PANI) and vanadium oxide (V2O5) have been assembled via the electrostatic layer-by-layer (LBL) technique. The films were characterized by vibrational analyses which indicated that the interactions between the two components lead to different properties in the films when compared to sol-gel films. of the neat compounds. In particular, using surface enhanced Raman scattering we were able to probe LBL film properties that depend on which material comprises the topmost layer.
Resumo:
Purpose: To characterize the vitreous intrinsic proteoglycans, investigate their dynamics, and examine their role in the supramolecular organization of the vitreous. Methods: Vitreous from normal rabbits was collected and processed for observation with the transmission electron microscope after treatment with glycosidases. Also, rabbits were injected intravitreally with [S-35]-sodium sulfate and sacrificed at several time intervals after the injection. Proteoglycans (PGs) were assayed in the vitreous supernatant or in whole samples extracted with guanidine hydrochloride by polyacrylamide or agarose gel electrophoresis, followed respectively by fluorography or autoradiography, and ion-exchange chromatography and gel-filtration chromatography, combined with glycolytic treatment of the samples. The sulfated glycosaminoglycans (GAGs) were characterized by agarose gel electrophoresis after treating vitreous samples with protease and specific glycosidases. Results: the electron microscopic study revealed a network with hyaluronic acid ( HA) as thin threads coating and connecting collagen fibrils. The elimination of the HA coat showed chondroitin sulfate granules (8-25 nm) arranged at regular intervals on the fibril surface. The chondroitinase ABC digestion, besides removing the granules, also caused the formation of thicker bundles of the collagen fibrils. The PG and GAG analysis indicated that there are three renewable PGs in the vitreous ( e. g., one heparan-and two chondroitin-sulfate ones). Conclusions: At least one of the chondroitin sulfate PGs is involved in the interactions that occur in the vitreous structure, mainly by providing adequate spacing between the collagen fibrils, a condition that is probably required for the transparency of the vitreous.
Resumo:
The reaction of Cu(NO3)(2).3H(2)O with 1,3-propanediamine (pn), in the presence of NaN3, afforded a 1:1 co-crystal formed by [Cu(NO3)(2)(pn)(2)] and [Cu(N-3)(NO3)(pn)(2)] (1 and 2), which were characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction. In both compounds, the copper(II) centers are in a distorted octahedral environment, formed by four N atoms of two bidentate pn ligands in the basal plane, whereas the axial bonds are formed by two O atoms from the nitrate ligands in 1 and one O atom from the nitrate ligand and one N atom from the azide ion in 2. The asymmetric unit of the crystal consists of two crystallographically independent 1 and 2 complexes, which are held together in a 3D network by a series of N - H center dot center dot center dot O and N - H center dot center dot center dot N hydrogen bonds, as well C - H center dot center dot center dot O interactions. New supramolecular synthons are identified by the occurrence of two geometrically distinct molecular recognition patterns involving the NO3- ion and amino groups from pn ligands.
Resumo:
The new complex [Cu(NCS)(2)(pn)] (1) (pn = 1,3-propanediamine) has been synthesized and characterized by elemental analysis, infrared and electronic spectroscopy. Single crystal X-ray diffraction studies revealed that complex 1 is made up of neutral [Cu(NCS)(2)(pn)] units which are connected by mu-1,3,3-thiocyanato groups to yield a 2D metal-organic framework with a brick-wall network topology. Intermolecular hydrogen bonds of the type NH...SCN and NH...NCS are also responsible for the stabilization of the crystal structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
(1) C11H17IN2STe, Mr = 463.83, P2(1)/n, a 7.6582(8), b = 13.8008(9), c = 15.026(3) angstrom, beta = 96.233(12)degrees, Z = 4, R-1 = 0.0318. (2) C15H19IN2STe, Mr = 513.88, P2(1)/n, a = 8.434(5), b = 11.697(5), c = 18.472(5) angstrom, beta = 98.556(5)degrees, Z = 4, R-1 = 0.0236. The synthesis of the aryltellurenyl N,N',-tetramethylthiourea (tmtu) iodide has been performed by ligand exchange with potassium iodide and the corresponding aryltellurenyl(tmtu) bromide. In both structures the tellurium atom is primarily three-coordinated, being bonded to a carbon atom of the organic ring and, in directions nearly perpendicular to the Te-C bond, to one tmtu sulfur atom and one iodine. In addition there are Te...secondary bonds, joining the molecules in centrosymmetric dimers, which in turn are joined through C-H...1 and C-H... S interactions, in (1) and (2), respectively.
Resumo:
Ruthenium(II) complexes with general formula [RuCl3(NO)(P-P)] were obtained in the solid state, where P-P = PPh(2)(CH2)(n)PPh(2) (n = 1-3) and PPh(2)-CH = CH-PPh(2). The P-31 NMR spectra of these compounds measured in CH2Cl2 showed only singlets, consistent with a fac configuration containing two equivalent phosphorus atoms, However the X-ray diffraction data show that the [RuCl3(NO){PPh(2)(CH2)(3)PPh(2)}] complex crystallizes in a met configuration, where one of the phosphorus atoms is trans to the NO group, in a slightly distorted octahedral geometry. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Mechanical alloying has been used successfully to produce nanocrystalline powders of hydroxyapatite (HA) using three different procedures. The milled HA was studied by X-ray diffraction, Infrared, Raman scattering spectroscopy and Scanning Electron Microscopy (SEM). We obtained HA with different degrees of crystallinity and time of milling. The grain size analysis through SEM and XRD shows particles with dimensions of 36.9, 14.3 and 35.5 nm (for (R1), (R2) and (R3), respectively) forming bigger units with dimensions given by 117.2, 110.8 and 154.4 nm (for (R1), (R2) and (R3), respectively). The Energy-Dispersive Spectroscopy (EDS) analysis showed that an atomic ratio of Ca/P= 1.67, 1.83 and 1.50 for reactions (R1), (R2) and (R3), respectively. These results suggest that the R1 nanocrystalline ceramic is closer to the expected value for the ratio Ca/P for hydroxyapatite, which is 513 congruent to 1.67. The bioactivity analysis shows that all the samples implanted into the rabbits can be considered biocompatible, since they had been considered not toxic, bad not caused inflammation and reject on the part of the organisms of the animals, during the period of implantation. The samples implanted in rabbits had presented new osseous tissue formation with the presence of osteoblasts cells. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The interaction between metaphosphate chains and the metal ions Ca2+ and Eu3+ has been studied in water by Eu3+ luminescence, infrared absorption, and P-31 NMR spectroscopy. Two main families of sites could be identified for the metal ions in the aqueous polyphosphate colloidal systems: (1) cagelike sites provided by the polyphosphate chain and (2) a family which arises following saturation of cagelike sites. Occupation of this second family leads to supramolecular interactions between polyphosphate chains and the consequent destabilization of the colloidal system. In the polyphosphate-Ca2+ system, this destabilization appears as a coacervation process. Equilibrium existing between colloidal species as a function of the compositions could be reasoned based on the spectroscopic measurements. The determination of coordination numbers and the correlation of the results with the observation of coacervates show that Eu3+ luminescence properties can be used to probe in a unique way the coacervation process.
Resumo:
Zein films plasticized with oleic acid were formed by solution casting, by the stretching of moldable resins, and by blown film extrusion. The effects of the forming process on film structure were investigated by X-ray diffraction. Wide-angle X-ray scattering (WAXS) patterns showed d-spacings at 4.5 and 10 angstrom, which were attributed to the zein alpha-helix backbone and inter-helix packing, respectively. The 4.5.angstrom d-spacing remained stable under processing while the 10 angstrom d-spacing varied with processing treatment. Small-angle X-ray scattering (SAXS) detected a long-range periodicity for the formed films but not for unprocessed zein, which suggests that the forming process-promoted film structure development is possibly aided by oleic acid. The SAXS d-spacing varied among the samples (130-238 angstrom) according to zein origin and film-forming method. X-ray scattering data suggest that the zein molecular structure resists processing but the zein supramolecular arrangements in the formed films are dependent on processing methods.
Resumo:
A novel supermolecule constituted by four mu(3)-oxo-triruthenium acetate clusters coordinated to manganese(III)-meso -tetra(4-pyridil)porphyrin acetate ([MnTPyP]CH3COO) has been synthesized. Characterization has been performed by UV-Vis and H-1 NMR spectroscopy. The electrochemical behavior (cyclic voltammetry and spectroelectrochemistry) in N,N'-dimethylformamide has been analyzed in terms of five redox processes: three related to peripheral clusters (Ru-IV,Ru-III,Ru-III/Ru-III,Ru-III,Ru-III/Ru-III,Ru-II,Ru-II) and two centered on the Mn-porphyrin core ((MnP)-P-III/(MnP)-P-II/(MnP2-)-P-II). A direct comparison has been performed between MnTCP and MnTPyP as catalysts for the cyclooctene and cyclohexane oxidation reactions. The improved selectivity exhibited by the supramolecular catalyst for cyclohexane oxidation has been ascribed to electronic effects on the oxomanganese(V) porphyrin species induced by the four peripheral clusters, in the formal (RuRuRuIII)-Ru-IV-Ru-III oxidation state. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
(1) C6H2N3O7- center dot C5H12NO2+, Mr = 346.26, P2(1)/c, a = 7.2356(6), b = 10.5765(9), c = 19.593(2) angstrom, 3 beta=95.101(6)degrees, V = 1493.5(2) angstrom(3), Z = 4, R-1 = 0.0414; (2) C6H2N3O7- center dot C6H8NO+, Mr = 38.24, P2(1)/n, a = 7.8713(5), b = 6.1979(7), c = 28.697(3) angstrom, beta = 90.028(7)degrees, V = 1400.0(2) angstrom(3), Z = 4, R-1 = 0.0416. The packing units in both compounds consist of hydrogen bonded cation-anion pairs. The (hyper)polarizabilities have been calculated for the crystallographic and optimized molecules, by AM1 and at the DFT/B3LYP(6-31G**) level.
Resumo:
The low-weight Pd(II) coordination polymers [(N(3))(HL)Pd {Pd(3)(mu-N(3))(mu-L)(5)}10(mu-L)(2)Pd(L)(HL)]{L = Pz(-) (1); mPz(-) (2), IPz(-)(3)} and [(N(3))(HPz)Pd{Pd(6)(mu-N(3))(2)(mu-PZ)(5)(mu-L)(5)}(10)(mu-L)(2)Pd(Pz)(HPz)] {L = mPz(-) (4), dmPz(-) (5); IPz(-) (6)} {L = pyrazolate (Pz(-)), 4-methylpyrazolate(mPz(-)), 4-iodopyrazo late (IPz(-)), 3,5-dimethylpyrazolate (dmPz(-))} have been prepared in this work. IR spectra clearly indicated the exobidentate nature of pyrazolato ligands as well the end-on coordination mode of the azido group. The molecular weight determinations by osmometry indicated that the species have a low degree of polymerization (n = 10). NMR experiments showed two pyrazolate environments in a 2:1 ratio, being assigned to the six-membered ring Pd(mu-L)(2)Pd and the Pd(mu-N(3))(mu-L)Pd metallocycle, respectively. UV-visible spectroscopy gave further evidences for the oligomeric structures of 1-6. Some alternative structures for the isostructural polymers have been suggested. (c) 2005 Elsevier Ltd. All rights reserved.