994 resultados para Random surface
Resumo:
Digital elevation models (DEMs) have been an important topic in geography and surveying sciences for decades due to their geomorphological importance as the reference surface for gravita-tion-driven material flow, as well as the wide range of uses and applications. When DEM is used in terrain analysis, for example in automatic drainage basin delineation, errors of the model collect in the analysis results. Investigation of this phenomenon is known as error propagation analysis, which has a direct influence on the decision-making process based on interpretations and applications of terrain analysis. Additionally, it may have an indirect influence on data acquisition and the DEM generation. The focus of the thesis was on the fine toposcale DEMs, which are typically represented in a 5-50m grid and used in the application scale 1:10 000-1:50 000. The thesis presents a three-step framework for investigating error propagation in DEM-based terrain analysis. The framework includes methods for visualising the morphological gross errors of DEMs, exploring the statistical and spatial characteristics of the DEM error, making analytical and simulation-based error propagation analysis and interpreting the error propagation analysis results. The DEM error model was built using geostatistical methods. The results show that appropriate and exhaustive reporting of various aspects of fine toposcale DEM error is a complex task. This is due to the high number of outliers in the error distribution and morphological gross errors, which are detectable with presented visualisation methods. In ad-dition, the use of global characterisation of DEM error is a gross generalisation of reality due to the small extent of the areas in which the decision of stationarity is not violated. This was shown using exhaustive high-quality reference DEM based on airborne laser scanning and local semivariogram analysis. The error propagation analysis revealed that, as expected, an increase in the DEM vertical error will increase the error in surface derivatives. However, contrary to expectations, the spatial au-tocorrelation of the model appears to have varying effects on the error propagation analysis depend-ing on the application. The use of a spatially uncorrelated DEM error model has been considered as a 'worst-case scenario', but this opinion is now challenged because none of the DEM derivatives investigated in the study had maximum variation with spatially uncorrelated random error. Sig-nificant performance improvement was achieved in simulation-based error propagation analysis by applying process convolution in generating realisations of the DEM error model. In addition, typology of uncertainty in drainage basin delineations is presented.
Resumo:
Two- and three-state models for the adsorption of organic compounds at the electrodelelectrolyte interface are proposed. Different size requirements, if any, for the neutral molecule and the adsorbing solvent are also considered. It is shown how the empirical, generalised surface layer (GSL) relationship (between the potential difference and the electrode charge) formulated by Damaskin et a / . can be understood at the molecular level.
Resumo:
Calcined samples of chromia supported on Al2O3, ZnO, or SnO2 show both Cr(VI) and Cr(III) on the surface, Cr(VI) being preponderant in the case of Al2O3-supported catalysts. The proportion of Cr(VI) decreases with increase in Cr content of the calcined catalysts. Reduction of the supported chromia catalysts in H2 at 720 K for 1 hr gives rise to Cr(III) and Cr(V). On carrying out the dehydrogenation of cyclohexane on the chromia catalysts a higher proportion of Cr(V) is found than after treatment with hydrogen. Vanadia supported on Al2O3 or MoO3 shows significant proportion of V(IV) on carrying out the oxidation of toluene on the catalysts. Calcined MoO3 (10%)/Al2O3 shows only Mo(VI) on the surface at 300 K, but on heating to 670 K in vacuum shows the presence of a considerable proportion of Mo(V) which on cooling disproportionates to Mo(IV) and Mo(VI). Mo(V) is noticed on surfaces of this catalyst on reduction with hydrogen as also on carrying out dehydrogenation of cyclohexane. While Bi2MoO6 shows only Mo(VI) on the surface at 300 K, heating it to 670 K in vacuum changes it entirely to Mo(V) which then gives rise to Mo(IV) and Mo(VI) on cooling.
Resumo:
Planar curves arise naturally as interfaces between two regions of the plane. An important part of statistical physics is the study of lattice models. This thesis is about the interfaces of 2D lattice models. The scaling limit is an infinite system limit which is taken by letting the lattice mesh decrease to zero. At criticality, the scaling limit of an interface is one of the SLE curves (Schramm-Loewner evolution), introduced by Oded Schramm. This family of random curves is parametrized by a real variable, which determines the universality class of the model. The first and the second paper of this thesis study properties of SLEs. They contain two different methods to study the whole SLE curve, which is, in fact, the most interesting object from the statistical physics point of view. These methods are applied to study two symmetries of SLE: reversibility and duality. The first paper uses an algebraic method and a representation of the Virasoro algebra to find common martingales to different processes, and that way, to confirm the symmetries for polynomial expected values of natural SLE data. In the second paper, a recursion is obtained for the same kind of expected values. The recursion is based on stationarity of the law of the whole SLE curve under a SLE induced flow. The third paper deals with one of the most central questions of the field and provides a framework of estimates for describing 2D scaling limits by SLE curves. In particular, it is shown that a weak estimate on the probability of an annulus crossing implies that a random curve arising from a statistical physics model will have scaling limits and those will be well-described by Loewner evolutions with random driving forces.
Resumo:
Recently established moderate size free piston driven hypersonic shock tunnel HST3 along with its calibration is described here. The extreme thermodynamic conditions prevalent behind the reflected shock wave have been utilized to study the catalytic and non-catalytic reactions of shock heated test gases like Ar, N2 or O2 with different material like C60 carbon, zirconia and ceria substituted zirconia. The exposed test samples are investigated using different experimental methods. These studies show the formation of carbon nitride due to the non-catalytic interaction of shock heated nitrogen gas with C60 carbon film. On the other hand, the ZrO2 undergoes only phase transformation from cubic to monoclinic structure and Ce0.5Zr0.5O2 in fluorite cubic phase changes to pyrochlore (Ce2Zr2O7±δ) phase by releasing oxygen from the lattice due to heterogeneous catalytic surface reaction.
Resumo:
The present study is to investigate the interaction of strong shock heated oxygen on the surface of SiO2 thin film. The thermally excited oxygen undergoes a three-body recombination reaction on the surface of silicon dioxide film. The different oxidation states of silicon species on the surface of the shock-exposed SiO2 film are discussed based on X-ray Photoelectron Spectroscopy (XPS) results. The surface morphology of the shock wave induced damage at the cross section of SiO2 film and structure modification of these materials are analyzed using scanning electron microscopy and ion microscopy. Whether the surface reaction of oxygen on SiO2 film is catalytic or non-catalytic is discussed in this paper.
Resumo:
Interaction of shock heated test gas in the free piston driven shock tube with bulk and thin film of cubic zirconium dioxide (ZrO2) prepared by combustion method is investigated. The test samples before and after exposure to the shock wave are analyzed by X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscope (SEM). The study shows transformation of metastable cubic ZrO2 to stable monoclinic ZrO2 phase after interacting with shock heated oxygen gas due to the heterogeneous catalytic recombination surface reaction.
Resumo:
We report the field emission from carbon nanofibers (CNFs) grown directly on cylindrical copper by a simple pyrolysis technique. The turn-on field is 0.17 V/µm and the emission current density is 0.9 mA/cm2 at 0.35 V/µm. The emission current is stable at a field of 0.35 V/µm and 6.5×10−6 Torr. The excellent field emission behavior is attributed to the sp2 phase in CNFs and the stable emission is due to the direct growth. The direct growth on cylindrical cathode is advantageous for field emission. ©2009 American Institute of Physics.
Resumo:
An investigation of power frequency (50 Hz) surface partial discharges in dry air, using 21r/3 Rogowski profile electrodes in the low pressure range of 0.067 to 91.333 kPa, shows that for the discharges occurring symmetrically around the electrodes and just outside the uniform field region, the breakdown voltages are 20 to 30% lower than those accounted for by the usual Paschen values. Emphasis, therefore, has been given to modified values of breakdown voltages for any useful calculations. The effect of reduced pressure on inception voltage has been discussed and an attempt has been made to explain the difference between the observed and calculated values on the basis of a pressure-dependent secondary ionization coefficient. It is shown that increasing the insulation thickness in a critical pressure range (0.067 to 0.400 kPa) does not allow any significant increase in the discharge free working stress of the insulation system. At higher pressures (>0.400 kPa) the increase in inception voltage with thickness and pressure follows an equation which is expected to hold for other insulating materials as well.
Resumo:
The analysis of the dispersion equation for surface magnetoplasmons in the Faraday configuration for the degenerate case of decaying constants being equal is given from the point of view of understanding the non-existence of the “degenerate modes”. This analysis also shows that there exist well defined “degenerate points” on the dispersion curve with electromagnetic fields varying linearly over small distances taken away from the interface.
Resumo:
Prescribed fire is one of the most widely-used management tools for reducing fuel loads in managed forests. However the long-term effects of repeated prescribed fires on soil carbon (C) and nitrogen (N) pools are poorly understood. This study aimed to investigate how different fire frequency regimes influence C and N pools in the surface soils (0–10 cm). A prescribed fire field experiment in a wet sclerophyll forest established in 1972 in southeast Queensland was used in this study. The fire frequency regimes included long unburnt (NB), burnt every 2 years (2yrB) and burnt every 4 years (4yrB), with four replications. Compared with the NB treatment, the 2yrB treatment lowered soil total C by 44%, total N by 54%, HCl hydrolysable C and N by 48% and 59%, KMnO4 oxidizable C by 81%, microbial biomass C and N by 42% and 33%, cumulative CO2–C by 28%, NaOCl-non-oxidizable C and N by 41% and 51%, and charcoal-C by 17%, respectively. The 4yrB and NB treatments showed no significant differences for these soil C and N pools. All soil labile, biologically active and recalcitrant and total C and N pools were correlated positively with each other and with soil moisture content, but negatively correlated with soil pH. The C:N ratios of different C and N pools were greater in the burned treatments than in the NB treatments. This study has highlighted that the prescribed burning at four year interval is a more sustainable management practice for this subtropical forest ecosystem.
Resumo:
A new automata model Mr,k, with a conceptually significant innovation in the form of multi-state alternatives at each instance, is proposed in this study. Computer simulations of the Mr,k, model in the context of feature selection in an unsupervised environment has demonstrated the superiority of the model over similar models without this multi-state-choice innovation.
Resumo:
The nonlinear mode coupling between two co-directional quasi-harmonic Rayleigh surface waves on an isotropic solid is analysed using the method of multiple scales. This procedure yields a system of six semi-linear hyperbolic partial differential equations with the same principal part governing the slow variations in the (complex) amplitudes of the two fundamental, the two second harmonic and the two combination frequency waves at the second stage of the perturbation expansion. A numerical solution of these equations for excitation by monochromatic signals at two arbitrary frequencies, indicates that there is a continuous transfer of energy back and forth among the fundamental, second harmonic and combination frequency waves due to mode coupling. The mode coupling tends to be more pronounced as the frequencies of the interacting waves approach each other.
Resumo:
A systematic derivation of the approximate coupled amplitude equations governing the propagation of a quasi-monochromatic Rayleigh surface wave on an isotropic solid is presented, starting from the non-linear governing differential equations and the non-linear free-surface boundary conditions, using the method of mulitple scales. An explicit solution of these equations for a signalling problem is obtained in terms of hyperbolic functions. In the case of monochromatic excitation, it is shown that the second harmonic amplitude grows initially at the expense of the fundamental and that the amplitudes of the fundamental and second harmonic remain bounded for all time.