942 resultados para Potomac River Estuary--Maps, Manuscript.
Resumo:
Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an in situ and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200 ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under in situ conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher than those of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail as a potential tool for risk mitigation policies in coastal management arrangements.
Resumo:
The “Port of Sotogrande” Beach (San Roque, Cadiz, Spain) has suffered significant erosion and changes since the construction of the marina and port of Sotogrande (San Roque, Cadiz, Spain). This paper reviews the dynamical processes on Guadiaro front and establishes relationship between them. It sets from a comparative evolution of the Alboran Sea Coast outlets and bays since the Little Ice Age, which shows that the Guadiaro estuary has remained functional while all other Alboran fluvial estuaries silted to son. The study shows the evidences of the coastal impacts around the mouth, even further than mouth littoral barriers, of the port infrastructures; and it provides new elements to understand the dynamical processes on the mouth and surroundings as well. That should be fundamental for shore protection along the whole coastal stretch
Growing Neural Gas approach for obtaining homogeneous maps by restricting the insertion of new nodes
Resumo:
The Growing Neural Gas model is used widely in artificial neural networks. However, its application is limited in some contexts by the proliferation of nodes in dense areas of the input space. In this study, we introduce some modifications to address this problem by imposing three restrictions on the insertion of new nodes. Each restriction aims to maintain the homogeneous values of selected criteria. One criterion is related to the square error of classification and an alternative approach is proposed for avoiding additional computational costs. Three parameters are added that allow the regulation of the restriction criteria. The resulting algorithm allows models to be obtained that suit specific needs by specifying meaningful parameters.
Resumo:
This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.
Resumo:
Opinions concerning the 7th article of the treaty.
Resumo:
Map showing the whole of New Jersey and its borders with as well as part of Pennsylvania and New York. Map is drawn in black ink with green, pink, and yellow watercolors used to show features such as waterways, borders, and places of interest. Notes on map concern border disputes between New Jersey and New York.
Resumo:
Written in an unidentified hand, signed by Barkstead.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Vollständige Carte des gantzen Rhein-Stroms, Hans Jacob Schellenberger, sculps. It was published in 1685. Scale [ca. 1:740,000]. Covers the Rhine River region. Map in German.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, and more. Relief shown pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Neueste Beschreibung des gantzen Rhein-Stroms. It was published by Johann Christoph Lochner, Buchhandler, ca. 1680. Scale [ca. 1:930,000]. Covers the Rhine River region. Map in German.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Europe Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, fortifications, territorial boundaries, and more. Relief shown pictorially. Includes also 15 city views: Bonn, Brysach, Bingen, Rheinfelden, Speyer, Maintz, Bacharach, Trarbach, Basel, Strasburg, Andernach, Wormbs, Cobolentz, Cöllen, Heydelberg.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Musketo Island & westward to Cape Elizabeth] (sheet originally published in 1776). The map is [sheet 27] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers the coast of Maine from Cape Elizabeth to Mosquito Island, and the Kennebec River and tributaries inland to Winslow, Maine. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the coast from Musketo Island & westward to Cape Elizabeth] (sheet originally published in 1776). The map is [sheet 28] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers the coast of Maine from Cape Elizabeth to Mosquito Island. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Piscataqua Harbour] (sheet originally published in 1779). The map is [sheet 32] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:25,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Covers coast of New Hampshire from North Beach to Portsmouth. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.