990 resultados para PHYSICAL VAPOR-DEPOSITION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = I nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = I nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Delta(so) of CdSe material with wurtzite structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Al0.38Ga0.62N/AIN/GaN HEMT structures have been grown by metal-organic chemical vapor deposition (MOCVD) on 2-inch sapphire substrates. Samples with AIN growth time of 0s (without AIN interlayer), 12, 15, 18 and 24s are characterized and compared. The electrical properties of two-dimensional electron gas (2DEG) are improved by introducing AIN interlayers. The AIN growth time in the range of 12-18s, corresponding to the AIN thickness of 1-1.5 nm, is appropriate for the design of Al0.38Ga0.62N/AIN/GaN HEMT structures. The lowest sheet resistance of 277 Omega sq(-1) and highest room temperature 2DEG mobility of 1460 cm(2)V(-1) s(-1) are obtained on structure with AIN growth time of 12s. The structure with AIN growth time of 15s exhibits the highest 2DEG concentration of 1.59 x 10(13) cm(-2) and the smallest RMS surface roughness of 0.2 nm. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heterojunction phototransistors (HPTs) with several Ge/Si nano-dot layers as the absorption region are fabricated to obtain improved light detectivity at 1.55 mu m. The HPT detectors are of n-p-n type with ten layers of Ge(8ML)/Si(45nm) incorporated in the base-collector junction and are grown by an ultrahigh-vacuum chemical-vapor deposition system. The detectors are operated with normal incidence. Because of the good quality of the grown material and fabrication process, the dark current is only 0.71pA/mu m(2) under 5 V bias and the break-down voltage is over 20 V. Compared to the positive-intrinsic-negative (PIN) reference detector with the same absorption layer, the responsivity is improved over 17 times for normal incidence at 1.55 mu m.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep level transient spectroscopy measurements were used to characterize the electrical properties of metal organic chemical vapor deposition grown undoped, Er-implanted and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. But four defect levels located at 0.300 eV, 0.188 eV, 0.600 eV and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280 eV, 0.190 eV, 0.610 eV and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30min. The origins of the deep defect levels are discussed. After annealing at 900 degrees C for 30min in a nitrogen flow, Er-related 1538nm luminescence peaks could be observed for the Er-implanted GaN sample. The energy-transfer and luminescence mechanism of the Er-implanted GaN film are described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel in-plane bandgap energy controlling technique by ultra-low pressure (22 mbar) selective area growth (SAG) has been developed. To our knowledge, this is the lowest pressure condition during SAG process ever reported. In this work, high crystalline quality InGaAsP-InP MQWs with a photoluminescence (PL) full-width at half-maximum (FWHM) of less than 35meV are selectively grown on mask-patterned planar InP substrates by ultra-low pressure (22 mbar) metal-organic chemical vapor deposition (MOCVD). In order to study the uniformity of the MQWs grown in the selective area, novel tapered masks are designed and used. Through optimizing growth conditions, a wide wavelength shift of over 80 nm with a rather small mask width variation (0-30 mu m) is obtained. The mechanism of ultra-low pressure SAG is detailed by analyzing the effect of various mask designs and quantum well widths. This powerful technique is then applied to fabricate an electroabsorption-modulated laser (EML). Superior device characteristics are achieved, such as a low threshold current of 19mA and an output power of 7mW. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Si0.75Ge0.25/Si/Si0.5Ge0.5 trilayer asymmetric superlattices were prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The nonlinear optical response caused by inherent asymmetric interfaces in this structure predicted by theories was verified by in-plane optical anisotropy in (001) plane measured via reflectance difference spectroscopy. The results show Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice is optically biaxial and the two optical eigen axes in (001) plane are along the directions [110] and [-110], respectively. Reflectance difference response between the above two eigen axes can be influenced by the width of the trilayers and reaches as large as similar to 10(-4)-10(-3) in 15-period 2.7 nm-Si0.75Ge0.25/8 nm-Si/1.3 nm-Si0.5Ge0.5 superlattice when the normal incident light wavelength is in the range of 500-1100 nm, which is quite remarkable because the optical anisotropy does not exist in bulk Si.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High quality ZnO films have been successfully grown on a Si (100) substrate by metal organic chemical vapour deposition with a gamma-Al2O3 buffer. The crystal structure, surface morphology and optical properties of the ZnO films were characterized by x-ray diffraction, Raman spectroscopy, atomic force microscopy and photoluminescence (PL) spectroscopy. The propel-ties of the films with the Al2O3 buffer were improved in comparison with those of as-grown ZnO films. It is shown that the ZnO films with the gamma-Al2O3 buffer grown on Si (100) substrates have a highly-preferential c-axis (0002) orientation, a narrow (0002) peak, smooth surface morphology and better PL spectral properties. This demonstrates that the use of gamma-Al2O3/Si as a ZnO substrate is beneficial for reducing the residual stress for further growth of ZnO films, compared with the growth on bulk Si substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years, growth of GaN-based materials-related quantum dots has become a hot topic in semiconductor materials research. Considerable efforts have been devoted to growth of self-assembled quantum dots of GaN-based materials via MOCVD (Metal Organic Chemical Vapor Deposition) and there are a lot of relevant literatures. There is, however, few review papers for the topic. In this paper, different experimental methods for fabrication of quantum dots of GaN-based materials via MOCVD are critically reviewed and the experimental conditions and parameters, which may affect growth of the quantum dots, are analyzed, with an aim at providing some critical reference for the related future experiment research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By means of low temperature photoluminescence and synchrotron radiation X-ray diffraction, existence of stacking faults has been determined in epitaxy lateral overgrowth GaN by metalorganic chemical vapor deposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on alpha-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hydrogen-implanted Si substrate has been used for the fabrication of the "compliant substrate", which can accommodate the mismatch strain during the heteroepitaxy. The compliance of the substrate can be modulated by the energy and dose of implanted hydrogen. In addition, the defects caused by implantation act as the gettering center for the internal gettering of the harmful metallic impurities. Compared with SiC films growth on substrate without implantation. all the measurements indicated that the mismatch strains in the SiC films grown on this substrate have been released and the crystalline qualities have been improved. It is a practical technique used for the compliant substrate fabrication and compatible with the semiconductor industry. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influences of AlN buffer thickness on the optical and the crystalline properties of metalorganic chemical vapor deposition wurtzite GaN layers on Si(I 11) substrate have been investigated. High-resolution X-ray diffraction and photoluminescence measurement reveal that the thickness of AlN buffer exerts a strong influence on the distribution of dislocation and stress in GaN epilayer. The evidence is further reinforced by atomic force microscopic observation of AlN nucleation process. The optimum thickness of AlN buffer to effectively suppress Si diffusion has been determined by secondary-ion mass spectroscopy to be in the range of 13-20 nm. In addition, it is found that appropriate Si diffusion in AlN buffer helps to compensate the tensile strain in GaN, which subsequently improves the optical quality of GaN on Si(I 1, 1), and reduces the cracks over the GaN surface. (C) 2003 Elsevier B.V. All rights reserved.