812 resultados para On-line mathematics learning
Resumo:
An eMathTeacher [Sánchez-Torrubia 2007a] is an eLearning on line self assessment tool that help students to active learning math algorithms by themselves, correcting their mistakes and providing them with clues to find the right solution. The tool presented in this paper is an example of this new concept on Computer Aided Instruction (CAI) resources and has been implemented as a Java applet and designed as an auxiliary instrument for both classroom teaching and individual practicing of Fleury’s algorithm. This tool, included within a set of eMathTeacher tools, has been designed as educational complement of Graph Algorithm active learning for first course students. Its characteristics of visualization, simplicity and interactivity, make this tutorial a great value pedagogical instrument.
Resumo:
This study examined the effects of computer assisted instruction (CAI) 1 hour per week for 18 weeks on changes in computational scores and attitudes of developmental mathematics students at schools with predominantly Black enrollment. Comparisons were made between students using CAI with differing software--PLATO, CSR or both together--and students using traditional instruction (TI) only.^ This study was conducted in the Dade County Public School System from February through June 1991, at two senior high schools. The dependent variables, the State Student Assessment Test (SSAT), and the School Subjects Attitude Scales (SSAS), measured students' computational scores and attitudes toward mathematics in 3 categories: interest, usefulness, and difficulty, respectively.^ Univariate analyses of variance were performed on the least squares mean differences from pretest to posttest for testing main effects and interactions. A t-test measured significant main effects and interactions. Results were interpreted at the.01 level of significance.^ Null hypotheses 1, 2, and 3 compared versions of CAI with the control group, for changes in mathematical computation scores measured with the SSAT. It could not be concluded that changes in standardized mathematics test scores of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were significantly higher than changes in test scores for students receiving TI only.^ Null hypotheses 4, 5, and 6 tested the effects of CAI for attitudes toward mathematics for experimental groups against control groups measured with the SSAS. Changes in attitudes toward mathematics of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were not significantly higher than attitude changes for students receiving TI only.^ Teacher effect on students' computational scores was a more influential variable than CAI. No interaction was found between gender and learning method on standardized mathematics test scores (null hypothesis 7). ^
Resumo:
The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
Enhancing children's self-concepts is widely accepted as a critical educational outcome of schooling and is postulated as a mediating variable that facilitates the attainment of other desired outcomes such as improved academic achievement. Despite considerable advances in self-concept research, there has been limited progress in devising teacher-administered enhancement interventions. This is unfortunate as teachers are crucial change agents during important developmental periods when self-concept is formed. The primary aim of the present investigation is to build on the promising features of previous self-concept enhancement studies by: (a) combining two exciting research directions developed by Burnett and Craven to develop a potentially powerful cognitive-based intervention; (b) incorporating recent developments in theory and measurement to ensure that the multidimensionality of self-concept is accounted for in the research design; (c) fully investigating the effects of a potentially strong cognitive intervention on reading, mathematics, school and learning self-concepts by using a large sample size and a sophisticated research design; (d) evaluating the effects of the intervention on affective and cognitive subcomponents of reading, mathematics, school and learning self-concepts over time to test for differential effects of the intervention; (e) modifying and extending current procedures to maximise the successful implementation of a teacher-mediated intervention in a naturalistic setting by incorporating sophisticated teacher training as suggested by Hattie (1992) and including an assessment of the efficacy of implementation; and (f) examining the durability of effects associated with the intervention.
Resumo:
This paper describes an approach to introducing fraction concepts using generic software tools such as Microsoft Office's PowerPoint to create "virtual" materials for mathematics teaching and learning. This approach replicates existing concrete materials and integrates virtual materials with current non-computer methods of teaching primary students about fractions. The paper reports a case study of a 12-year-old student, Frank, who had an extremely limited understanding of fractions. Frank also lacked motivation for learning mathematics in general and interacted with his peers in a negative way during mathematics lessons. In just one classroom session involving the seamless integration of off-computer and on-computer activities, Frank acquired a basic understanding of simple common equivalent fractions. Further, he was observed as the session progressed to be an enthusiastic learner who offered to share his learning with his peers. The study's "virtual replication" approach for fractions involves the manipulation of concrete materials (folding paper regions) alongside the manipulation of their virtual equivalent (shading screen regions). As researchers have pointed out, the emergence of new technologies does not mean old technologies become redundant. Learning technologies have not replaced print and oral language or basic mathematical understanding. Instead, they are modifying, reshaping, and blending the ways in which humankind speaks, reads, writes, and works mathematically. Constructivist theories of learning and teaching argue that mathematics understanding is developed from concrete to pictorial to abstract and that, ultimately, mathematics learning and teaching is about refinement and expression of ideas and concepts. Therefore, by seamlessly integrating the use of concrete materials and virtual materials generated by computer software applications, an opportunity arises to enhance the teaching and learning value of both materials.
Resumo:
The overall purpose of this study was to develop a model to inform the design of professional development programs and the implementation of cooperative learning within Thai primary school mathematics classrooms. Action research design, with interviews, surveys and observations, was used for this study. Survey questionnaires and classroom observations investigated the factors that influence the implementation of cooperative learning strategies and academic achievement in Thai primary school mathematics classrooms. The teachers’ interviews and classroom observation also examined the factors that need to be addressed in teacher professional development programs in order to facilitate cooperative learning in Thai mathematics classrooms. The outcome of this study was a model consisting of two sets of criteria to inform the successful implementation of cooperative learning in Thai primary schools. The first set of criteria was for proposers and developers of professional development programs. This set consists of macro- and micro-level criteria. The macro-level criteria focus on the overall structure of professional development programs and how and when the professional development programs should be implemented. The micro-level criteria focused on the specific topics that need to be included in professional development programs. The second set of criteria was for Thai principals and teachers to facilitate the introduction of cooperative learning in their classrooms. The research outcome also indicated that the attainment of these cooperative learning strategies and skills had a positive impact on the students’ learning of mathematics.
Resumo:
This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.
Resumo:
This book reports the outcomes of an investigation into discovering the qualitatively different ways that students experience Problem-based learning (PBL)in virtual space. PBL is increasingly being used in many fields including engineering education. At the same time, many engineering education providers are turning to online distance education. Unfortunately there is a dearth of research into what constitutes an effective learning experience for adult learners who undertake PBL instruction through online distance education. Data were collected from a course which adopted the PBL strategy and was delivered entirely in virtual space. Students were asked to respond to open-ended questions designed to elicit their learning experiences. Data were analysed using the phenomenographic approach. Five qualitatively different ways of experiencing PBL in virtual space were discovered. Results indicate that the design of students' online learning experience was responsible for making students aware of deeper ways of experienceing PBL in virtual space. The outcomes imply that pedagogical strategies can be devised for shifting students' focus as they engage in virtual PBL.
Resumo:
This paper examines the enabling effect of using blended learning and synchronous internet mediated communication technologies to improve learning and develop a Sense of Community (SOC) in a group of post-graduate students consisting of a mix of on-campus and off-campus students. Both quantitative and qualitative data collected over a number of years supports the assertion that the blended learning environment enhanced both teaching and learning. The development of a SOC was pivotal to the success of the blended approach when working with geographically isolated groups within a single learning environment.
Resumo:
Our students come from diverse backgrounds. They need flexibility in their learning. First year students tend to worry when they miss lectures or part of lectures. Having the lecture as an on line resource allows students to miss a lecture without stressing about it and to be more relaxed in the lecture, knowing that anything they may miss will be available later. The resource: The Windows based program from Blueberry Software (not Blackberry!) - BB Flashback - allows the simultaneous recording of the computer screen together with the audio, as well as Webcam recording. Editing capabilities include adding pause buttons, graphics and text to the file before exporting it in a flash file. Any diagrams drawn on the board or shown via visualiser can be photographed and easily incorporated. The audio from the file can be extracted if required to be posted as podcast. Exporting modes other than Flash are also available, allowing vodcasting if you wish. What you will need: - the recording software: it can be installed on the lecture hall computer just prior to lecture if needed - a computer: either the ones in lecture halls, especially if fitted with audio recording, or a laptop (I have used audio recording via Bluetooth for mobility). Feedback from students has been positive and will be presented on the poster.
Resumo:
The current study examined the influence of psychosocial constructs, from a theory of planned behavior (TPB) perspective, to predict university students’ (N = 159) use of a newly offered on-line learning tool, enhanced podcasts. Pre-semester, students completed questionnaires assessing the TPB predictors (attitude, subjective norm, perceived behavioral control) related to intended enhanced podcast use until the middle of semester. Mid-semester, students completed similar items relating to podcast use until the end of semester. Self-report measures of podcast use were obtained at the middle and end of semester. At both time points, students’ attitudes predicted their intentions and, at the initial time point, subjective norm also predicted intended podcast use. An examination of the beliefs underlying attitudes, the only construct to predict intentions at both time points, revealed differences between those students higher, rather than lower on intentions to use the podcasts, especially for the perceived educational benefits of podcast use later in the semester. Intentions to use enhanced podcasting only predicted self-reported use in the second half of the semester. Overall, this study identified some of the determinants which should be considered by those aiming to encourage student use of novel on-line educational tools.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.