958 resultados para Network air gap
Resumo:
Objective: Effective management of multi-resistant organisms is an important issue for hospitals both in Australia and overseas. This study investigates the utility of using Bayesian Network (BN) analysis to examine relationships between risk factors and colonization with Vancomycin Resistant Enterococcus (VRE). Design: Bayesian Network Analysis was performed using infection control data collected over a period of 36 months (2008-2010). Setting: Princess Alexandra Hospital (PAH), Brisbane. Outcome of interest: Number of new VRE Isolates Methods: A BN is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). BN enables multiple interacting agents to be studied simultaneously. The initial BN model was constructed based on the infectious disease physician‟s expert knowledge and current literature. Continuous variables were dichotomised by using third quartile values of year 2008 data. BN was used to examine the probabilistic relationships between VRE isolates and risk factors; and to establish which factors were associated with an increased probability of a high number of VRE isolates. Software: Netica (version 4.16). Results: Preliminary analysis revealed that VRE transmission and VRE prevalence were the most influential factors in predicting a high number of VRE isolates. Interestingly, several factors (hand hygiene and cleaning) known through literature to be associated with VRE prevalence, did not appear to be as influential as expected in this BN model. Conclusions: This preliminary work has shown that Bayesian Network Analysis is a useful tool in examining clinical infection prevention issues, where there is often a web of factors that influence outcomes. This BN model can be restructured easily enabling various combinations of agents to be studied.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
This paper presents a nonlinear gust-attenuation controller based on constrained neural-network (NN) theory. The controller aims to achieve sufficient stability and handling quality for a fixed-wing unmanned aerial system (UAS) in a gusty environment when control inputs are subjected to constraints. Constraints in inputs emulate situations where aircraft actuators fail requiring the aircraft to be operated with fail-safe capability. The proposed controller enables gust-attenuation property and stabilizes the aircraft dynamics in a gusty environment. The proposed flight controller is obtained by solving the Hamilton-Jacobi-Isaacs (HJI) equations based on an policy iteration (PI) approach. Performance of the controller is evaluated using a high-fidelity six degree-of-freedom Shadow UAS model. Simulations show that our controller demonstrates great performance improvement in a gusty environment, especially in angle-of-attack (AOA), pitch and pitch rate. Comparative studies are conducted with the proportional-integral-derivative (PID) controllers, justifying the efficiency of our controller and verifying its suitability for integration into the design of flight control systems for forced landing of UASs.
Resumo:
Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.
Resumo:
This thesis analysed the theoretical and ontological issues of previous scholarship concerning information technology and indigenous people. As an alternative, the thesis used the framework of actor-network-theory, especially through historiographical and ethnographic techniques. The thesis revealed an assemblage of indigenous/digital enactments striving for relevance and avoiding obsolescence. It also recognised heterogeneities- including user-ambivalences, oscillations, noise, non-coherences and disruptions - as part of the milieu of the daily digital lives of indigenous people. By taking heterogeneities into account, the thesis ensured that the data “speaks for itself” and that social inquiry is not overtaken by ideology and ontology.
Resumo:
Aims Wellness assessments can determine adolescent lifestyle behaviors. A better understanding of wellness differences between high and low SES adolescents could assist policy makers to develop improved strategies to bridge the gap between these two groups. The aim of this investigation was to explore wellness differences between high and low SES adolescents. Methods In total, 241 (125 high and 116 low SES) adolescents completed the 5-Factor Wellness Inventory (5F-Wel). The 5F-Wel comprises 97 items contributing to 17 subscales, 5 dimensions, 4 contexts, total wellness, and a life satisfaction index, with scores ranging from 0-100. Independent sample t-tests were performed with Levene’s test of equality for variances, which checked the assumption of homogeneity of variances. Results Overall, 117 (94%) and 112 (97 %) high and low SES participants had complete data and were included in the analysis. The high SES group scored higher for total wellness (M = 81.09, SE = .61) than the low SES group (M = 75.73, SE = .99). This difference was significant t (186) = 4.635, p < .05, with a medium effect size r = .32. The high SES group scored higher on 23 of 27 scales (21 scales, p < .05), while the low SES group scored higher on the remaining 3 scales (all non-significant). Conclusion These results contribute empirical data to the body of literature, indicating a large wellness discrepancy between high and low SES youth. Deficient areas can be targeted by policymakers to assist in bridging the gap between these groups.
Resumo:
Two recent decisions of the Supreme Court of New South Wales in the context of obstetric management have highlighted firstly, the importance of keeping legible, accurate and detailed medical records; and secondly, the challenges faced by those seeking to establish causation, particularly where epidemiological evidence is relied upon...
Resumo:
In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g=s/d is set at 1, 3 and 6 and Reynolds number ranging from Re=60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re=60 and g=1) (ii) a stable shielding wake pattern (80≤Re≤175 and g=1) (iii) a wiggling shielding wake pattern (60≤Re≤175 and g=3) (iv) a vortex shedding wake pattern (60≤Re≤175 and g=6) At g=1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g=1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g=6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.
Resumo:
The paper utilises the Juhn Murphy and Pierce (1991) decomposition to shed light on the pattern of slow male-female wage convergance in Australia over the 1980s. The analysis allows one to distinguish between the role of wage structure and genderspecific effects. The central question addressed is whether rising wage inequality counteracted the forces of increased female investment in labour market skills, i.e. education and experience. The conclusion is that in contrast to the US and the UK, Australian women do not appear to have been swimming against a tide of adverse wage structure changes.
Resumo:
Recently there has been significant interest of researchers and practitioners on the use of Bluetooth as a complementary transport data. However, literature is limited with the understanding of the Bluetooth MAC Scanner (BMS) based data acquisition process and the properties of the data being collected. This paper first provides an insight on the BMS data acquisition process. Thereafter, it discovers the interesting facts from analysis of the real BMS data from both motorway and arterial networks of Brisbane, Australia. The knowledge gained is helpful for researchers and practitioners to understand the BMS data being collected which is vital to the development of management and control algorithms using the data.
Resumo:
Objective. To identify whether a standardised Echinacea formulation is effective in the prevention of respiratory and other symptoms associated with long-haul flights. Methods. 175 adults participated in a randomised, double-blind placebo-controlled trial travelling back from Australia to America, Europe, or Africa for a period of 1–5 weeks on commercial flights via economy class. Participants took Echinacea (root extract, standardised to 4.4 mg alkylamides) or placebo tablets. Participants were surveyed before, immediately after travel, and at 4 weeks after travel regarding upper respiratory symptoms and travel-related quality of life. Results. Respiratory symptoms for both groups increased significantly during travel (
Resumo:
The paper projects the gender wage gap for 25-64 year-olds in Canada over the period 2001-2031. The empirical analysis uses the Survey of Labour and Income Dynamics together with Statistics Canada demographic projections. The methodology combines the population projections with assumptions relating to the evolution of educational attainment in order to first project the future distribution of human capital skills and, based on these projections, the future size of the gender wage gap. The projections suggest continued gender wage convergence produced by changing skills characteristics. However, a substantial pay gap will remain in 2031.
Resumo:
The importance of wage structure is frequently interpreted as indirect evidence of the role played by labour market institutions. The current paper follows in this tradition, examining the role of wage structure in explaining the trend in the gender wage gap over the period 1973–91 for both Australia and the UK. The focus is upon whether changes in wage structure (and associated gender wage gap) both across country and over time are compatible with institutional explanations. Combining comparisons both cross-country and over time yields a more stringent, albeit indirect, test of the role of institutions.
Resumo:
The paper attempts to project the future trend of the gender wage gap in Australia up to 2031. The empirical analysis utilises the Income Distribution Survey (1996) together with Australian Bureau of Statistics (ABS) demographic projections. The methodology combines the ABS projections with assumptions relating to the evolution of educational attainment in order to project the future distribution of human capital skills and consequently the future size of the gender wage gap. The analysis suggests that female relative pay will continue to rise up to 2031. However, gender wage convergence will be relatively slow, with a substantial gap remaining in 2031.
Resumo:
This paper projects the gender wage gap for 25–64 year old Americans for the period 2000–40. The analysis uses data from the Panel Survey of Income Dynamics (PSID) for 1995 and 1996 together with the U.S. Census Bureau demographic projections. The method combines the population projections with assumptions regarding the evolution of educational attainment in order to first project the future distribution of skills and, based on these projections, the future size of the gender wage gap. The main set of projections suggests that changing skill characteristics—specifically educational attainment—will continue to close the gender wage gap. However, even in 2040, a substantial pay gap of at least 75 percent of the size of that in 1995 will remain.