817 resultados para Management models and fashions
Resumo:
This paper addresses the problem of discovering business process models from event logs. Existing approaches to this problem strike various tradeoffs between accuracy and understandability of the discovered models. With respect to the second criterion, empirical studies have shown that block-structured process models are generally more understandable and less error-prone than unstructured ones. Accordingly, several automated process discovery methods generate block-structured models by construction. These approaches however intertwine the concern of producing accurate models with that of ensuring their structuredness, sometimes sacrificing the former to ensure the latter. In this paper we propose an alternative approach that separates these two concerns. Instead of directly discovering a structured process model, we first apply a well-known heuristic technique that discovers more accurate but sometimes unstructured (and even unsound) process models, and then transform the resulting model into a structured one. An experimental evaluation shows that our “discover and structure” approach outperforms traditional “discover structured” approaches with respect to a range of accuracy and complexity measures.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.
Resumo:
The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.
Resumo:
Sustainability of benefits from capture fisheries has been a concern of fisheries scientists for a long time. The development of fisheries management models reflects the historical debate (from maximum sustainable yield to maximum economic yield, and so on) of what benefits are valued and need to be sustained. Social and anthropological research needs an increased emphasis on bio-socioeconomic models to effectively determine directions for fisheries management.
Resumo:
We present a method to integrate environmental time series into stock assessment models and to test the significance of correlations between population processes and the environmental time series. Parameters that relate the environmental time series to population processes are included in the stock assessment model, and likelihood ratio tests are used to determine if the parameters improve the fit to the data significantly. Two approaches are considered to integrate the environmental relationship. In the environmental model, the population dynamics process (e.g. recruitment) is proportional to the environmental variable, whereas in the environmental model with process error it is proportional to the environmental variable, but the model allows an additional temporal variation (process error) constrained by a log-normal distribution. The methods are tested by using simulation analysis and compared to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. In the traditional method, the estimates of recruitment were provided by a model that allowed the recruitment only to have a temporal variation constrained by a log-normal distribution. We illustrate the methods by applying them to test the statistical significance of the correlation between sea-surface temperature (SST) and recruitment to the snapper (Pagrus auratus) stock in the Hauraki Gulf–Bay of Plenty, New Zealand. Simulation analyses indicated that the integrated approach with additional process error is superior to the traditional method of correlating model estimates with environmental variables outside the estimation procedure. The results suggest that, for the snapper stock, recruitment is positively correlated with SST at the time of spawning.
Resumo:
Coupled hydrology and water quality models are an important tool today, used in the understanding and management of surface water and watershed areas. Such problems are generally subject to substantial uncertainty in parameters, process understanding, and data. Component models, drawing on different data, concepts, and structures, are affected differently by each of these uncertain elements. This paper proposes a framework wherein the response of component models to their respective uncertain elements can be quantified and assessed, using a hydrological model and water quality model as two exemplars. The resulting assessments can be used to identify model coupling strategies that permit more appropriate use and calibration of individual models, and a better overall coupled model response. One key finding was that an approximate balance of water quality and hydrological model responses can be obtained using both the QUAL2E and Mike11 water quality models. The balance point, however, does not support a particularly narrow surface response (or stringent calibration criteria) with respect to the water quality calibration data, at least in the case examined here. Additionally, it is clear from the results presented that the structural source of uncertainty is at least as significant as parameter-based uncertainties in areal models. © 2012 John Wiley & Sons, Ltd.
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.
Resumo:
Purpose – The purpose of this paper is to describe an emergent supply chain management system that supports a sustainable values based organization (VBO) using a structuration theory-based framework.
Design/methodology/approach – A case study of a sustainable beef cooperative employing a structuration theory framework provides insights into sustainable supply chain management models.
Findings – The supply chain design and management afford the key to the VBO’s success. In order to attain the necessary price premium, the unique product attributes acquired through the natural beef production process must be sustained along the entire supply chain and communicated to the end customer. Structuration theory is useful in understanding supply chain management in VBOs.
Research limitations/implications – The paper has implications for studying VBOs, particularly those prioritizing sustainability values. The descriptive model presented is useful in settings where organizational structure and the supply chain are needed to support sustainable products and processes and whose success is facilitated by establishing strategic partners, especially those that make possible economies of scale. The study is limited to one, privately owned firm, operating in a specialty industry sector.
Practical implications – The paper has implications for those entities with an identified values set that endows the product with unique characteristics that must be conveyed to their end consumer in order to command a price premium and/or differentiate the product from a commodity. The case study provides an example of how a unique product as well as a facilitating organizational structure and supply chain emerge out of the application of a set of core values.
Originality/value – Little previous research focuses on implications of supply chain management in VBOs. In addition, the paper contributes to both the supply chain management and sustainability literature by relating supply chain management to a more comprehensive sustainability agenda including social, environmental, and long-term economic sustainability and by a theoretically based structuring.
Keywords Sustainable development, Supply chain management, Food industry, Organizational culture, Animal husbandry
Resumo:
In responding to the demand for change and improvement, local government has applied a plethora of operations management-based methods, tools and techniques. This article explores how these methods, specifically in the form of performance management models, are used to improve alignment between central government policy and local government practice, an area which has thus far been neglected in the literature. Using multiple case studies from Environmental Waste Management Services, this research reports that models derived in the private sector are often directly ‘implanted’ into the public sector. This has challenged the efficacy of all performance management models. However, those organisations which used models most effectively did so by embedding (contextualisation) and extending (reconceptualisation) them beyond their original scope. Moreover, success with these models created a cumulative effect whereby other operations management approaches were probed, adapted and used.
Resumo:
Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.
Resumo:
Task-based dataflow programming models and runtimes emerge as promising candidates for programming multicore and manycore architectures. These programming models analyze dynamically task dependencies at runtime and schedule independent tasks concurrently to the processing elements. In such models, cache locality, which is critical for performance, becomes more challenging in the presence of fine-grain tasks, and in architectures with many simple cores.
This paper presents a combined hardware-software approach to improve cache locality and offer better performance is terms of execution time and energy in the memory system. We propose the explicit bulk prefetcher (EBP) and epoch-based cache management (ECM) to help runtimes prefetch task data and guide the replacement decisions in caches. The runtimem software can use this hardware support to expose its internal knowledge about the tasks to the architecture and achieve more efficient task-based execution. Our combined scheme outperforms HW-only prefetchers and state-of-the-art replacement policies, improves performance by an average of 17%, generates on average 26% fewer L2 misses, and consumes on average 28% less energy in the components of the memory system.
Resumo:
Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
National park models have evolved in tandem with the emergence of a multifunctional countryside. Sustainable development has been added to the traditional twin aims of conservation and recreation. This is typified by recent national park designations, such as the Cairngorms National Park in Scotland. A proposed Mournes national park in Northern Ireland has evolved a stage further with a model of national park to deliver national economic goals envisaged by government. This seeks to commodify the natural landscape. This paper compares Cairngorm and Mourne stakeholders’ views on the principal features of both models: park aims, management structures and planning functions. While Cairngorm stakeholders were largely positive from the outset, the model of national park introduced is not without criticism. Conversely, Mourne stakeholders have adopted an anti-national park stance. Nevertheless, the model of national park proposed possessing a strong economic imperative, an absence of the Sandford Principle as a means to manage likely conflicts, and lacking any planning powers in its own right, may still be insufficient to bring about widespread support for a Mourne national park. Such a model is also likely to accelerate the degradation of the Mourne landscape. Competing national identities (British and Irish) provide an additional dimension to the national park debate in Northern Ireland. Deep ideological cleavages are capable of derailing the introduction of a national park irrespective of the model proposed. In Northern Ireland the national park debate is not only about reconciling environmental and economic interests but also political and ethno-national differences.