Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region, China


Autoria(s): Li, Fengqing; Cai, Qinghua; Fu, Xiaocheng; Liu, Jiankang
Data(s)

10/03/2009

Resumo

Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

National Natural Science Foundation of China [30330140]; Knowledge Innovation Project of CAS [KZCX2-YW-427]; National Basic Research Program of China [2002CB412300]

Identificador

http://ir.ihb.ac.cn/handle/152342/7854

http://www.irgrid.ac.cn/handle/1471x/58440

Idioma(s)

英语

Fonte

Li, Fengqing; Cai, Qinghua; Fu, Xiaocheng; Liu, Jiankang.Construction of habitat suitability models (HSMs) for benthic macroinvertebrate and their applications to instream environmental flows: A case study in Xiangxi River of Three Gorges Reservior region, China,PROGRESS IN NATURAL SCIENCE,2009,19(3):359-367

Palavras-Chave #Multidisciplinary Sciences #Habitat suitability model #Weighted usable area #Instream environmental flow #Benthic macroinvertebrate #Xiangxi river #Three Gorges reservoir
Tipo

期刊论文