998 resultados para MINERAL-ELECTROLYTE INTERFACES
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.
Resumo:
Interactive intention understanding is important for Pen-based User Interface (PUI). Many works on this topic are reported, and focus on handwriting or sketching recognition algorithms at the lexical layer. But these algorithms cannot totally solve the problem of intention understanding and can not provide the pen-based software with high usability. Hence, a scenario-based interactive intention understanding framework is presented in this paper, and is used to simulate human cognitive mechanisms and cognitive habits. By providing the understanding environment supporting the framework, we can apply the framework to the practical PUI system. The evaluation of the Scientific Training Management System for the Chinese National Diving Team shows that the framework is effective in improving the usability and enhancing the intention understanding capacity of this system.
Resumo:
We present a new technique called‘Tilt Menu’ for better extending selection capabilities of pen-based interfaces.The Tilt Menu is implemented by using 3D orientation information of pen devices while performing selection tasks.The Tilt Menu has the potential to aid traditional onehanded techniques as it simultaneously generates the secondary input (e.g., a command or parameter selection) while drawing/interacting with a pen tip without having to use the second hand or another device. We conduct two experiments to explore the performance of the Tilt Menu. In the first experiment, we analyze the effect of parameters of the Tilt Menu, such as the menu size and orientation of the item, on its usability. Results of the first experiment suggest some design guidelines for the Tilt Menu. In the second experiment, the Tilt Menu is compared to two types of techniques while performing connect-the-dot tasks using freeform drawing mechanism. Results of the second experiment show that the Tilt Menu perform better in comparison to the Tool Palette, and is as good as the Toolglass.
Resumo:
Single and multiple quantum wells of lattice-matched superlattices material GaAs/AlxGa1-xAs have been studied as photoelectrodes in photoelectrochemical cells containing nonaqueous electrolyte. Structural photocurrent spectra in the potential range of -1.8 to 1.0 V (vs standard calomel electrode) were obtained. The quantum yields for both superlattice electrodes were estimated and compared.
Resumo:
The influence of heterostructure quality on transport and optical properties of GaAs/AlGaAs single quantum wells with different qualities was studied. In a conventional sample-A, the transport scattering time and the quantum scattering time are small and close to each other. The interface roughness scattering is a dominant scattering mechanism. From comparison between theory and experiment, interface roughness with fluctuation height 2.5 Angstrom and the lateral size of 50-70 Angstrom were estimated. For samples introducing superlattices instead of AlGaAs layers or by utilizing growth interruption, both the transport and PL measurements showed that interfaces were rather smooth in the samples. The two scattering times are much longer. The interface roughness scattering is relegated to an unimportant position. Results demonstrated that it is important to control the formation of heterostructures in order to improve the interface quality.
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
The EER spectra of a single quantum well GaAs\AlxGa1-xAs electrode were studied as a function of applied reverse bias in ferrocene, p-methyl nitrobenzene and hydroquinone+benzoquinone non-aqueous solutions. EER spectra were compared for different redox species and showed that a pronounced quantum-confined Stark effect and a Franz-Keldysh oscillation for a single quantum well electrode were obtained in the p-methyl-nitrobenzene- and hydroquinone+benzoquinone-containing solutions. A surface interaction of the single quantum well electrode with ferrocene led to fewer changes in the electric field of the space charge layer for reverse bias; this was suggested to explain the weak quantum-confined Stark effect and Franz-Keldysh oscillation effect observed for the single quantum well electrode in the ferrocene-containing solution. (C) 1997 Elsevier Science S.A.
Resumo:
Photoluminescence (PL) is used to study the interface properties of GaAs/AlGaAs quantum well (QW) heterostructures prepared by molecular beam epitaxy with growth interruption (GI). The discrete luminescence lines observed for the sample with GI are assigned to the splitting of the heavy-hole exciton associated with heterointerface islands with the lateral size greater than exciton diameter and mean height less than one monolayer, and the spectra have the Gaussian lineshapes. The results strongly support the microroughness model. We also study the temperature dependence of the exciton energies and find that excitons are localized at the interface roughness at low temperature even in the sample with GI. The lateral size of the microroughness of the GI sample is estimated to be less than 5 nm from the exciton localization energy.