995 resultados para Learning deficits
Resumo:
Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage.
Resumo:
Personalization in e-learning allows the adaptation of contents, learning strategiesand educational resources to the competencies, previous knowledge or preferences of the student. This project takes a multidisciplinary perspective for devising standards-based personalization capabilities into virtual e-learning environments, focusing on the conceptof adaptive learning itinerary, using reusable learning objects as the basis of the system and using ontologies and semantic web technologies.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
Les autores i autors d'aquest llibre ofereixen una descripció de l'evolució general de l'e-learning apuntant els elements clau cap als que ha d'anar evolucionant. Parteixen de l'experiència i la pràctica contrastada amb les investigacions sobre el tema. Al llarg dels diferents capítols ens mostren com viu un estudiant virtual, el seu paper i la manera com planteja i organitza les seves activitats; ens acosten al professorat analitzant el seu rol en el disseny de la formació i la comunicació amb els estudiants; parlen de la col·laboració, analitzant com dissenyar activitats col·laboratives i assenyalant els seus avantatges i límits; descriuen els diferents recursos d'aprenentatge que podem disposar en el disseny dels cursos i, finalment, acompanyen la nostra mirada cap al futur pròxim analitzant les tendències i els reptes als que hem de fer front per construir l'e-learning del segle XXI.
Resumo:
Background: Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.Methods: We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis. Results: Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits. Conclusions: Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.
Resumo:
This article discusses the lessons learned from developing and delivering the Vocational Management Training for the European Tourism Industry (VocMat) online training programme, which was aimed at providing flexible, online distance learning for the European tourism industry. The programme was designed to address managers ‘need for flexible, senior management level training which they could access at a time and place which fitted in with their working and non-work commitments. The authors present two main approaches to using the Virtual Learning Environment, the feedback from the participants, and the implications of online Technology in extending tourism training opportunities
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior