924 resultados para Gibbs energy of mixing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.
Resumo:
The excess enthalpy of mixing of DMF-water was measured at 25° C in the 0-1 molar fraction range. The maximum of heat is developed for a 0.33 DMF molar fraction. The excess partial molar and other excess quantities were also calculated for the DMF-water system at 25° C. The results suggest a strong interaction between DMF and water. © 1983.
Resumo:
Anomalous thermal behavior on the EPR linewidths has been observed for Gd impurities diluted in CexA1-xBn (A=La,Y, B=Ir,Os,Rh,Pd) intermediate-valence compounds. In this work we show that the exchange interaction between the local magnetic moments and the intermediate-valence host ions has an important contribution to the relaxation rates of the local moments. We calculated the relaxation, using the Redfield formalism and the ideas contained in the interconfigurational fluctuation model of Hirst. We show that the exchange interaction contribution has an exponential dependence on the excitation energy of the intermediate-valence ions. © 1992 The American Physical Society.
Resumo:
We show that the ground-state energy of the q-deformed Lipkin-Meshkov-Glick Hamiltonian can be estimated by q-deformed coherent states. We also use these coherent states to analyse qualitatively the suppression of the second order ground-state energy phase transition of this model. © 1993.
Resumo:
In this work we study the electronic structure associated to a disordered distribution of bipolarons in polythiophene. The polymer chain is modelled by a tight-binding Hamiltonian with explicit treatment of electron-phonon coupling and the elastic energy of the sigma framework. The model also includes the electrostatic interaction due to the counterions. The density of states of the disordered system is obtained by the use of the Negative Factor Counting technique. Our results show that ion-induced conformational disorder can account for the closure of the gap and that the states around the Fermi level are extended. © 1993.
Resumo:
The excess enthalpy of mixing of acetone-water was measured at 25°C in the 0-1 molar fraction range. The minimum and the maximum in the H E (X 2) curve occurred at X 2 = 0.18 and X 2 = 0.85, respectively. The excess partial molar and other excess quantities were also calculated for the acetone-water system at 25°C. The results are interpreted in view of the influence of acetone on the structure of water. © 1983.
Resumo:
We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.
Resumo:
Thin films of chemically synthesized polyaniline and poly(o-methoxyaniline) were exposed to ionizing X-ray radiation and characterized by radiation induced conductivity measurements, ultraviolet-visible spectroscopy, electron paramagnetic resonance, electrical conductivity and solubility measurements. Samples irradiated in vacuum or dry Oxygen atmosphere did not have their electronic spectra changed. However, under humid atmosphere the energy of the excitonic transition was decreased and accompanied by a great conductivity increase. The results indicate that doping of polyaniline can be induced by X-ray radiation which might be of great interest for applications on lithography and microelectronics.
Resumo:
We present a theoretical description of ligand field effects in the di-μ-azido- bis[{azido(N,N-diethylethylenediamine)} copper(II)] compound by the Simple Overlap Model. The ligand field Hamiltonian is expressed in terms of irreducible tensor operators for an assumed D3h site symmetry occupied by the copper ion. The ligand field parameters, calculated from the available structural data, indicate that the copper ion is under the influence of a very strong ligand field. The energy of the d-d absorption band is well reproduced phenomenologically by the model.
Resumo:
Water waves generated by a solid mass is a complex phenomenon discussed in this paper by numerical and experimental approaches. A model based on shallow water equations with shocks (Saint Venant) has developed. It can reproduce the amplitude and the energy of the wave quite well, but because it consistently generates a hydraulic jump, it is able to reproduce the profile, in the case of high relative thickness of slide, but in the case of small relative thickness it is unable to reproduce the amplitude of the wave. As the momentum conservation is not verified during the phase of wave creation, a second technique based on discharge transfer coefficient α, is introduced at the zone of impact. Numerical tests have been performed and validated this technique from the experimental results of the wave's height obtained in a flume.
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.
Resumo:
The size effects in the magnetization of a long cylindrical wire of circular cross section in the presence of an external magnetic field are investigated. For this study the London theory is used with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex positions. The ground state of the vortex lattice for n = 1 up to 18 vortices for a given radius of the cylinder is obtained. It is found that the finite size of the sample provokes a matching effect in the magnetization, as found in experiments with superconducting samples of finite size but different geometry. © 1999 American Institute of Physics.