1000 resultados para Gauss beam
Resumo:
Fe-N films containing the Fe16N2 phase were prepared in a high-vacuum system of ion-beam-assisted deposition (IBAD). The composition and structure of the films were analysed by Auger electron spectroscopy (AES) and X-ray diffraction (XRD), respectively. Magnetic properties of the films were measured by a vibrating sample magnetometer (VSM). The phase composition of Fe-N films depend sensitively on the N/Fe atomic arrival ratio and the deposition temperature. An Fe16N2 film was deposited successfully on a GaAs (1 0 0) substrate by IBAD at a N/Fe atomic arrival ratio of 0.12. The gram-saturation magnetic moment of the Fe16N2 film obtained is 237 emu/g at room temperature, the possible cause has been analysed and discussed. Hysteresis loops of Fe16N2 have been measured, the coercive force H-c is about 120 Oe, which is much larger than the value for Fe, this means the Fe16N2 sample exhibits a large uniaxial magnetocrystalline anisotropy. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The structural characteristics of gallium nitride (GaN) films grown on sapphire(0001) substrates by gas source molecular beam epitaxy (GSMBE) have been investigated using high-resolution synchrotron irradiation X-ray diffraction and cathodoluminescence with a variable energy electron beam. Besides the well-known GaN hexagonal structure, a small portion of cubic phase GaN was observed. The X-ray measurements provide an essential means for the structural identification of the GaN layers. Arising from the variable penetration depth of the electron beam in the cathodoluminescence measurements, it was found that the fraction of the GaN cubic-phase typically increased as the probing depth was increased. The results suggest that the GaN cubic phase is mostly located near the interface between the substrate and GaN layer due to the initial nucleation.
Resumo:
A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.
Resumo:
Pseudomorphic Iny2Al1-y2As/In0.73Ga0.27As/Iny1Al1-y1As (y1 greater than or equal to 0.52) modulation-doped heterostructures with an intentional nonlattice-matched buffer layer were successfully grown by molecular beam epitaxy on (100)InP substrates. Fourier transform photoluminescence and double crystal x-ray diffraction measurements show a superior crystalline quality in the high In content channel, when In mole fraction increases from y1=0.52 to 0.55 in the Iny1Al1-y1As buffer layer. In this case, an increasing of 16.3% and 23.5% for conductivity (mu xn(s)) and mobility, related to the strain compensation in the In0.73Ga0.27As channel, was achieved, respectively, comparing to the structure containing a well-lattice matched buffer layer. With increasing the mismatch further (y1=0.58), a morphology with cross-hatched pattern was observed due to the onset of a large amount of misfit dislocations, and the electronic characterization is not able to be improved continuously. Because we can realize high quality strained P-HEMTs in a relative wide range of equivalent beam flux (EBF) ratios, the stringent control over the constant EBF is not indispensable on this In-based material system. (C) 1997 American Vacuum Society.
Resumo:
VOx thin films have been fabricated by low temperature ion beam sputtering and post reductive annealing process. Semiconductor-metal phase transition is observed for the film annealed at 400 degrees C for 2 hours. The film also shows a polycrystal structure with grain size from 50nm to 150nm. The VOx thin films fabricated by this process have a TCR up to -2.7% at room temperature. Our results indicate a promising fabrication method of the nano-structured VOx film with relatively high TCR and semiconductor-metal phase transition.
Resumo:
In this work, the guided modes of a photonic crystal polarization beam splitter (PC-PBS) are studied. We demonstrate that the transmission of a low-loss photonic crystal 120 degrees waveguide bend integrated with the PBS will be influenced if the PBS is multi-moded. We propose a single-moded PC-PBS structure by introducing deformed structures, and it shows twice the enhancement of the transmission. This device with remarkable improvement of performance is promising in the use of photonic crystal integrated circuits design.
Resumo:
Hexagonal GaN films (similar to 3 mu m) were grown on 3c-SiC/Si(111) and carbonized Si(111) substrates using a thick AlN buffer Cracks are observed on the surface of the GaN film grown on the carbonized Si(111), while no cracks are visible on the 3c-SiC/Si(111). XRD exhibits polycrystalline nature of the GaN film grown on the carbonized Si(111) due to poorer crystalline quality of this substrate. Raman spectra reveal that all GaN layers are under tensile stress, and the GaN layer grown on 3c-SiC/Si(111) shows a very low stress value of sigma(xx) = 0.65 Gpa. In low-temperature Photoluminescence spectra the remarkable donor-acceptor-pair recombination and yellow band can be attributed to the incorporation of Si impurities from the decomposition of SiC.
Resumo:
A promising approach for positioning of InAs islands on (110)GaAs is demonstrated. By combining self-assembly of quantum dots with solid source molecular beam epitaxy (MBE) on cleaved edge of InGaAs/GaAs superlattice (SL), linear alignment of InAs islands on the InGaAs strain layers have been fabricated The cleaved edge of InGaAs/GaAs SL acts as strain nanopattern for InAs selective growth. Indium atoms incident on the surface will preferentially migrate to InGaAs regions where favorable bonding sites are available. The strain nanopattern's effect is studied by the different indium fraction and thickness of InxGa1-xAs/GaAs SL. The ordering of the InAs islands is found to depend on the properties of the underlying InGaAs strain layers.
Resumo:
High structural and optical quality 1.3 mu m GaInNAs/GaAs quantum well (QW) samples with 42.5% indium content were successfully grown by molecular beam epitaxy. The growth of well layers was monitored by reflection high-energy electron diffraction (RHEED). Room temperature photoluminescence (PL) peak intensity of the GaIn0.425NAs/GaAs (6 nm / 20 nm) 3QW is higher than, and the full width at half maximum (FWHM) is comparable to, that of In0.425GaAs/GaAs 3QW, indicating improved optical quality due to strain compensation effects by introducing N to the high indium content InGaAs epilayer. The measured (004) X-ray rocking curve shows clear satellite peaks and Pendellosung fringes, suggesting high film uniformity and smooth interfaces. The cross sectional TEM measurements further reveal that there are no structural defects in such high indium content QWs. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The control of the photonic crystal waveguide over the beam profile of vertical-cavity surface-emitting lasers is investigated. The symmetric slab waveguide model is adopted to analyze the control parameters, of the beam profile in the photonic-crystal vertical-cavity surface-emitting laser (PC-VCSEL). The filling factor (the ratio of the hole diameter to the lattice constant) and the etching depth control the divergence angle of the PC-VCSEL, and the low filling factor and the shallow etching depth are beneficial to achieve the low-divergence-angle beam. Two types of PC-VCSELs with different filling factors and etching depths are designed and fabricated. The experimental results show that the device with a lower filling factor and a shallower etching depth has a lower divergence angle, which agrees well with the theoretical predictions.
Resumo:
We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).
Resumo:
The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.
Resumo:
We report a LD side-pumped fundamental-mode (Mx(2) = 1.35 and My(2) = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 mu s pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.
Resumo:
We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.