1000 resultados para Emission
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
The. total electron emission yields following the interaction of slow highly charged ions (SHCI) O4+ with different material surfaces (W, Au, Si and SiO2) have been measured. It is found that the electron emission yield gamma increases proportionally with the projectile velocity v ranging from 5.36 x 10(5)m/s to 10.7 x 10(5)m/s. The total emission yield is dependent on the target materials, and it turns out to follow the relationship gamma(Au) > gamma(Si)> gamma(W). The result shows that the electron emission yields are mainly determined by the electron stopping power of the target when the projectile potential energy is taken as a constant, which is in good agreement with the former studies
Resumo:
Using the isospin- and momentum-dependent hadronic transport model 1BUU04, we have investigated the influence of the entrance-channel isospin asymmetry on the sensitivity of the pre-equilibrium neutron/proton ratio to symmetry energy in central heavy-ion collisions induced by high-energy radioactive beams. Our analysis and discussion are based on the dynamical simulations of the three isotopic reaction Systems Sn-132+Sn-124, Sn-124+Sn-112 and Sn-112+(112)Su which are of the same total proton number but, different isospin asymmetry. We find that, the kinetic-energy distributions of the pre-equilibrium neutron/proton ratio are quite sensitive to the density-dependence of symmetry energy at incident beam energy E/A = 400 MeV, and the sensitivity increases as the isospin asymmetry of the reaction system increases.
Resumo:
T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.
Resumo:
The electron emission yield of the interaction of highly charged argon ions with silicon surface is reported. The experiment was done at the Atomic Physics Research Platform on the Electron Cyclotron Resonance (ECR) Ion Source of the National Laboratory HIRFL (Heavy Ion Research Facility in Lanzhou). In the experiment, the potential energy and kinetic energy was selected by varying the projectile charge states and extracting voltage, thus the contributions of the projectile potential energy deposition and electronic energy loss in the solid are extensively investigated. The results show that, the two main factors leading to surface electron emission, namely the potential energy deposition and the electronic energy loss, are both approximately proportional to the electron emission yield per ion.
Resumo:
The X-ray emission induced by highly charged argon and xenon ions impinging on a beryllium surface is investigated. It is found that spectra of the X-ray induced by Ar-17,Ar-18+ interacting with the surface are very different from those of the X-ray induced by Ar-17,Ar-18+ interacting with residual gases. The result provides an experimental evidence for the existence of hollow atoms below the surface. Several unexpected X-ray lines are also found in the experiment. Firstly, K X-rays are observed when Ar16+ ions which initially have no K shell holes interact with the surface. Secondly, if there are more than 2 M shell vacancies at the initial time, strong M alpha alpha two-electron-one-photon (TEOP) transitions are found in the collisions of Xe-28+,Xe-29+,Xe-30+ ions with the surface.
Resumo:
This paper studies the X-ray spectra produced by the interaction of highly charged ions of Arq+ (q = 16, 17, 18) with metallic surface of Be, Al, Ni, Mo and Au respectively. The experimental results show that the K alpha X-ray emerges from under the surface of solid in the interaction of ions with targets. The multi-electron excitation occurred in the process neutralization of the Ar16+ in electronic configuration of 1s(2) in metallic surfaces, which produces vacancy in the K shell. Electron from high n state transition to K vacancy gives off X-ray. We find that there is no obvious relation between the shape of X-ray spectra and the different targets. The X-ray yield of incident ions are associated with initial electronic configuration. The X-ray yield of target is related to the kinetic energy of the incident ions.
Resumo:
The electron emission induced by highly charged ions Pb-207(q+) (24 <= q <= 36) interacting with Si(110) surface is reported. The result shows that the electron emission yield Y has a strong dependence on the projectile charge state q, incidence angle psi and impact energy E. In fitting the experimental data we found a nearly 1/tan psi dependence of Y. Theoretical analysis shows that these processes are closely related to the process of potential electron emission based on the classical over-the-barrier model.
Resumo:
We study hard photon production from a chemically non-equilibrated quark-gluon plasma with finite baryon density on the basis of Juttner distribution of partons of the system. We find that the photon production is ruled by early times, main contributions are given by rapidities y <= 6, and photon yield is a strongly increasing function of the initial quark chemical potential. In addition, we note that contribution from bremsstrahlung and Compton process qg -> q gamma dominates.
Resumo:
The electron emission yields from the interaction of slow highly charged ions (SHCI) He2+, O2+ and Ne2+ with clean Si surface are measured separately. It is found that electron emission yield gamma increases proportionally to projectile kinetic energy E-p/M-p, ranging from 0.75 keV/u to 10.5 keV/u (i.e. 3.8 x 10(5) m/s <= v(p) <= 1.42 x 10(6) m/s), and it is higher for heavy ions (O2+ and Ne2+) than for light ion (He2+). For O2+ and Ne2+, gamma increases with Z(p) decreasing in our energy range, and it shows quite different from the result for higher projectile kinetic energy. After calculating the stopping power by using TRIM 2006, it is found that the fraction of secondary electrons induced by recoil atoms increases significantly at lower projectile energy, thereby leads to the differences in gamma for heavy ions O2+ and Ne2+ between lower and higher projectile kinetic energy.
Resumo:
在兰州重离子加速器国家实验室电子回旋共振离子源高电荷态原子物理实验平台上,用低能(0.75keV/u≤EP/MP≤10.5keV/u,即3.8×105m/s≤vP≤1.42×106m/s)He2+,O2+和Ne2+离子束正入射到自清洁Si表面时二次电子发射产额的实验结果.结果表明电子发射产额γ近似正比于入射离子动能EP/MP.在相同动能下,γ(O)>γ(Ne)>γ(He),对于原子序数ZP比较大的O2+和Ne2+离子,ZP大者反而γ小,这与较高入射能量时的结果截然不同.通过计算不同入射能量下入射离子的阻止能损S,发现反冲原子对激发二次电子的作用随入射离子能量的降低显著增大,这正是导致在较低能量范围内二次电子发射产额与较高入射能量时存在差异的主要原因.