967 resultados para ELECTROCHEMICAL SYNTHESIS
Resumo:
In an effort to develop a fully computerized approach for structural synthesis of kinematic chains the steps involved in the method of structural synthesis based on transformation of binary chains [38] have been recast in a format suitable for implementation on a digital computer. The methodology thus evolved has been combined with the algebraic procedures for structural analysis [44] to develop a unified computer program for structural synthesis and analysis of simple jointed kinematic chains with a degree of freedom 0. Applications of this program are presented in the succeeding parts of the paper.
Resumo:
The reliability of the computer program for structural synthesis and analysis of simple-jointed kinematic chains developed in Part 1 has been established by applying it to several cases for whuch solutions are either fully or partially available in the literature, such as 7-link, zero-freedom chains; 8- and 10-link, single-freedom chains; 12-link, single-freedom binary chains; and 9-link, two-freedom chains. In the process some discrepancies in the results reported in previous literature have been brought to light.
Resumo:
The unified computer program for structural synthesis and analysis developed in Part 1 has been employed to derive the new and complete collection of 97 10-link, three-freedom simple-jointed kinematic chains. The program shows that of these chains, 3 have total freedom, 70 have partial freedom and the remaining 24 have fractionated freedom and that the 97 chains yield a total of 676 distinct mechanisms.
Resumo:
It is shown that lithium can be oxidatively extracted from Li2MoO3 at room temperature using Br2 in CHCl3. The delithiated oxides, Li2â��xMoO3 (0 < x â�¤ 1.5) retain the parent ordered rocksalt structure. Complete removal of lithium from Li2MoO3 using Br2 in CH3CN results in a poorly crystalline MoO3 that transforms to the stable structure at 280�°C. Li2MoO3 undergoes topotactic ion-exchange in aqueous H2SO4 to yield a new protonated oxide, H2MoO3.
Resumo:
Substituted polycyclic ethers and hydrocarbons are synthesised by the cycloaddition reaction of arynes with oxazoles.
Resumo:
ZrMo2O8 was synthesized via two routes, namely, the traditional solid-state method and the solution combustion method. The compounds were characterized by powder X-ray diffraction, UV−visible spectroscopy, scanning electron microscopy, and transmission electron microscopy. The crystals belong to a trigonal crystal system, space group P 1c (No. 163) with a = 10.1391(6) Å, c = 11.7084(8) Å, and Z = 6. The band gap of the compounds was around 2.7 eV, and DFT calculations suggest the indirect nature of the band gap. The irregular MoO4 tetrahedra create a dipole and inhibit the process of electron−hole recombination, thereby making the material photoactive. The photocatalytic activity of the compounds prepared by both routes has been investigated for the degradation of various dyes under UV irradiation, and this showed the specificity of the compounds towards the degradation of non-anthraquinonic dyes.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
Resumo:
The traditional reductionist approach to science has a tendency to create 'islands of knowledge in a sea of ignorance', with a much stronger focus on analysis of scientific inputs rather than synthesis of socially relevant outcomes. This might be the principal reason why intended end users of climate information generally fail to embrace what the climate science community has to offer. The translation of climate information into real-life action requires 3 essential components: salience (the perceived relevance of the information), credibility (the perceived technical quality of the information) and legitimacy (the perceived objectivity of the process by which the information is shared). We explore each of these components using 3 case studies focused on dryland cropping in Australia, India and Brazil. In regards to 'salience' we discuss the challenge for climate science to be 'policy-relevant', using Australian drought policy as an example. In a village in southern India 'credibility' was gained through engagement between scientists and risk managers with the aim of building social capital, achieved only at high cost to science institutions. Finally, in Brazil we found that 'legitimacy' is a fragile, yet renewable resource that needs to be part of the package for successful climate applications; legitimacy can be easily eroded but is difficult to recover. We conclude that climate risk management requires holistic solutions derived from cross-disciplinary and participatory, user-oriented research. Approaches that combine climate, agroecological and socioeconomic models provide the scientific capabilities for establishment of 'borderless' institutions without disciplinary constraints. Such institutions could provide the necessary support and flexibility to deliver the social benefits of climate science across diverse contexts. Our case studies show that this type of solution is already being applied, and suggest that the climate science community attempt to address existing institutional constraints, which still impede climate risk management.
Resumo:
An enzyme catalysing the synthesis of sym-homospermidine from putrescine and NAD+ with concomitant liberation of NH3 was purified 100-fold from Lathyrus sativus (grass pea) seedlings by affinity chromatography on Blue Sepharose. This thiol enzyme had an apparent mol.wt. of 75000 and exhibited Michelis-Menten kinetics with Km 3.0mM for putrescine. The same enzyme activity could also be demonstrated in the crude extracts of sandal (Santalum album) leaves, but with a specific activity 15-fold greater than that in L. sativus seedlings.
Resumo:
Phase diagrams for the systems Ln2O3---H2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) studied at 5000 to 10,000 psi and temperature range of 200–900°C, show that Ln(OH)3 hexagonal and LnOOH monoclinic are the only stable phases from Nd to Ho. The cubic oxide phase (C---Ln2O3) is stable for systems of Er, Tm, Yb and Lu, with no evidence of its equilibrium in the systems of lighter lanthanides. Using strong acids, HNO3 and HCOOH, as mineralisers the cubic oxides could be stabilised from Eu down to Lu. Solid solution phases of CeO2---Y2O3 and Eu2O3---Y2O3 have also been synthesised with HNO3 as mineraliser, since these compounds have promising use as solid electrolyte and phosphor materials respectively.
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
To study the structure activity relationship (SAR) on the cytotoxic activity and probe the structural requirement for the potent antitumor activity, a series of novel diazaspiro bicyclo hydantoin derivatives were designed and synthesized. Their structures were confirmed by H-1 NMR, LCMS and IR analyses. The antiproliferative effect of these compounds were determined against human leukemia, K562 (chronic myelogenous leukemia) and CEM (T-cell leukemia) cells using trypan blue and MTT assay, and the SAR associated with the position of N-terminal substituents in diazaspiro bicyclo hydantoin have also been discussed. It has been observed that these compounds displayed strong, moderate and weak cytotoxic activities. Interestingly, compounds having electron withdrawing groups at third and fourth position of the phenyl ring displayed selectively cytotoxic activities to both the cell lines tested with IC50 value lower than 50 mu M. In addition, the cytotoxic activities of the compounds 7(a-o) bearing the substituents at N-3 position of diazaspiro bicyclo hydantoin increases in the order alkene > ester > ether and plays an important role in determining their antitumor activities. The position and number of substituents in benzyl group attached to N-8 of diazaspiro bicyclo hydantoin nucleus interacted selectively with specific targets leading to the difference of biochemical and pharmacological effects.
Resumo:
Metal hydrazine nitrate complexes of the type M(N2H4)Nn (NO3)2 where M = Mg, n = 2; M = Mn, Fe, Co, Ni, Zn and Cd and n = 3; metal dihydrazine azide complexes of the type M(N2H4)2 (N3)2 where M = Mg, Co, Ni and Zn; and Mg(N2H4)2 (C1O4)2 have been prepared by dissolving the respective metal powders in the solution of corresponding ammonium salts (NO3, N3 and C1O4) in hydrazine hydrate. These hydrazine complexes were also prepared by the conventional method involving the addition of alcoholic hydrazine hydrate to the aqueous solution of metal salts. The hydrazine complexes have been characterised by chemical analysis, infrared spectra and differential thermal analysis (DTA). Impact sensitivities of hydrazine complexes were determined by the drop weight method. The reactivity of these hydrazine complexes does not change with the method of preparation.
Resumo:
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or [`]attractors'. We describe the synthesis, in vitro binding and selected in vivo toxicity data for [gamma]-methylene [gamma]-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognized by a single conformation of the EcR binding pocket.