853 resultados para CONGESTIVE-HEART-FAILURE
Resumo:
Pimelea species (or desert riceflower) are small native plants endemic to the drier inland pastoral regions of Australia, which cause a unique syndrome in grazing cattle characterised by submandibular oedema and oedema in the brisket area as a result of right-sided heart failure attributed to the toxin simplexin. Field evidence suggests that poisoning can occur through minor, inadvertent consumption of Pimelea plant material, but the minimum simplexin intake required to induce Pimelea poisoning is not known. In this study, mild Pimelea poisoning was induced at a daily dose of 12.5 mg Pimelea/kg bodyweight per day, equivalent to 2.5 µg simplexin/kg bodyweight per day, demonstrating the high potential toxicity of these plant species. Effects in all animals diminished with prolonged low dose feeding and we postulate that these animals developed mechanisms for detoxifying simplexin, 1, possibly through rumen bacteria adaptation or activation of liver enzymes.
Resumo:
In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.
Resumo:
- BACKGROUND Chronic diseases are increasing worldwide and have become a significant burden to those affected by those diseases. Disease-specific education programs have demonstrated improved outcomes, although people do forget information quickly or memorize it incorrectly. The teach-back method was introduced in an attempt to reinforce education to patients. To date, the evidence regarding the effectiveness of health education employing the teach-back method in improved care has not yet been reviewed systematically. - OBJECTIVES This systematic review examined the evidence on using the teach-back method in health education programs for improving adherence and self-management of people with chronic disease. - INCLUSION CRITERIA Types of participants: Adults aged 18 years and over with one or more than one chronic disease. Types of intervention: All types of interventions which included the teach-back method in an education program for people with chronic diseases. The comparator was chronic disease education programs that did not involve the teach-back method. Types of studies: Randomized and non-randomized controlled trials, cohort studies, before-after studies and case-control studies. Types of outcomes: The outcomes of interest were adherence, self-management, disease-specific knowledge, readmission, knowledge retention, self-efficacy and quality of life. - SEARCH STRATEGY Searches were conducted in CINAHL, MEDLINE, EMBASE, Cochrane CENTRAL, Web of Science, ProQuest Nursing and Allied Health Source, and Google Scholar databases. Search terms were combined by AND or OR in search strings. Reference lists of included articles were also searched for further potential references. - METHODOLOGICAL QUALITY Two reviewers conducted quality appraisal of papers using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument. - DATA EXTRACTION Data were extracted using the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument data extraction instruments. - DATA SYNTHESIS There was significant heterogeneity in selected studies, hence a meta-analysis was not possible and the results were presented in narrative form. - RESULTS Of the 21 articles retrieved in full, 12 on the use of the teach-back method met the inclusion criteria and were selected for analysis. Four studies confirmed improved disease-specific knowledge in intervention participants. One study showed a statistically significant improvement in adherence to medication and diet among type 2 diabetics patients in the intervention group compared to the control group (p < 0.001). Two studies found statistically significant improvements in self-efficacy (p = 0.0026 and p < 0.001) in the intervention groups. One study examined quality of life in heart failure patients but the results did not improve from the intervention (p = 0.59). Five studies found a reduction in readmission rates and hospitalization but these were not always statistically significant. Two studies showed improvement in daily weighing among heart failure participants, and in adherence to diet, exercise and foot care among those with type 2 diabetes. - CONCLUSION Overall, the teach-back method showed positive effects in a wide range of health care outcomes although these were not always statistically significant. Studies in this systematic review revealed improved outcomes in disease-specific knowledge, adherence, self-efficacy and the inhaler technique. There was a positive but inconsistent trend also seen in improved self-care and reduction of hospital readmission rates. There was limited evidence on improvement in quality of life or disease related knowledge retention.
Resumo:
Thyroid hormone (TH) plays an important role in maintaining a homeostasis in all the cells of our body. It also has significant cardiovascular effects, and abnormalities of its concentration can cause cardiovascular disease and even morbidity. Especially development of heart failure has been connected to low levels of thyroid hormone. A decrease in TH levels or TH-receptor binding adversely effects cardiac function. Although, this occurs in part through alterations in excitation-contraction and transport proteins, recent data from our laboratory indicate that TH also mediates changes in myocardial energy metabolism. Thyroid dysfunction may limit the heart s ability to shift substrate pathways and provide adequate energy supply during stress responses. Our goals of these studies were to determine substrate oxidation pattern in systemic and cardiac specific hypothyroidism at rest and at higher rates of oxygen demand. Additionally we investigated the TH mediated mechanisms in myocardial substrate selection and established the metabolic phenotype caused by a thyroid receptor dysfunction. We measured cardiac metabolism in an isolated heart model using 13Carbon isotopomer analyses with MR spectroscopy to determine function, oxygen consumption, fluxes and fractional contribution of acetyl-CoA to the citric acid cycle (CAC). Molecular pathways for changes in cardiac function and substrate shifts occurring during stress through thyroid receptor abnormalities were determined by protein analyses. Our results show that TH modifies substrate selection through nuclear-mediated and rapid posttranscriptional mechanisms. It modifies substrate selection differentially at rest and at higher rates of oxygen demand. Chronic TH deficiency depresses total CAC flux and selectively fatty acid flux, whereas acute TH supplementation decreases lactate oxidation. Insertion of a dominant negative thyroid receptor (Δ337T) alters metabolic phenotype and contractive efficiency in heart. The capability of the Δ337T heart to increase carbohydrate oxidation in response to stress seems to be limited. These studies provided a clearer understanding of the TH role in heart disease and shed light to identification of the molecular mechanisms that will facilitate in finding targets for heart failure prevention and treatment.
Resumo:
This research presents an innovative design approach for the development of high efficiency Ventricular assist device that can be used for long-term support a heart failure patient. Computational fluid dynamics (CFD) techniques were applied to the development and intensive analysis to improve the performance and reliability of the pump. From the CFD analysis, a prototype pump was created and evaluated on the mock circulation loop that simulate the human circulatory system environment to evaluate its performance in support varying heart conditions.
Resumo:
Atrial fibrillation is the most common arrhythmia requiring treatment. This Thesis investigated atrial fibrillation (AF) with a specific emphasis on atrial remodeling which was analysed from epidemiological, clinical and magnetocardiographic (MCG) perspectives. In the first study we evaluated in real-life clinical practice a population-based cohort of AF patients referred for their first elective cardioversion (CV). 183 consecutive patients were included of whom in 153 (84%) sinus rhythm (SR) was restored. Only 39 (25%) of those maintained SR for one year. Shorter duration of AF and the use of sotalol were the only characteristics associated with better restoration and maintenance of SR. During the one-year follow-up 40% of the patients ended up in permanent AF. Female gender and older age were associated with the acceptance of permanent AF. The LIFE-trial was a prospective, randomised, double-blinded study that evaluated losartan and atenolol in patients with hypertension and left ventricular hypertrophy (LVH). Of the 8,851 patients with SR at baseline and without a history of AF 371 patients developed new-onset AF during the study. Patients with new-onset AF had an increased risk of cardiac events, stroke, and increased rate of hospitalisation for heart failure. Younger age, female gender, lower systolic blood pressure, lesser LVH in ECG and randomisation to losartan therapy were independently associated with lower frequency of new-onset AF. The impact of AF on morbidity and mortality was evaluated in a post-hoc analysis of the OPTIMAAL trial that compared losartan with captopril in patients with acute myocardial infarction (AMI) and evidence of LV dysfunction. Of the 5,477 randomised patients 655 had AF at baseline, and 345 patients developed new AF during the follow-up period, median 3.0 years. Older patients and patients with signs of more serious heart disease had and developed AF more often. Patients with AF at baseline had an increased risk of mortality (hazard ratio (HR) of 1.32) and stroke (HR 1.77). New-onset AF was associated with increased mortality (HR 1.82) and stroke (HR of 2.29). In the fourth study we assessed the reproducibility of our MCG method. This method was used in the fifth study where 26 patients with persistent AF had immediately after the CV longer P-wave duration and higher energy of the last portion of atrial signal (RMS40) in MCG, increased P-wave dispersion in SAECG and decreased pump function of the atria as well as enlarged atrial diameter in echocardiography compared to age- and disease-matched controls. After one month in SR, P-wave duration in MCG still remained longer and left atrial (LA) diameter greater compared to the controls, while the other measurements had returned to the same level as in the control group. In conclusion is not a rare condition in either general population or patients with hypertension or AMI, and it is associated with increased risk of morbidity and mortality. Therefore, atrial remodeling that increases the likelihood of AF and also seems to be relatively stable has to be identified and prevented. MCG was found to be an encouraging new method to study electrical atrial remodeling and reverse remodeling. RAAS-suppressing medications appear to be the most promising method to prevent atrial remodeling and AF.
Resumo:
Stroke is the second leading cause of death and the leading cause of disability worldwide. Of all strokes, up to 80% to 85% are ischemic, and of these, less than 10% occur in young individuals. Stroke in young adults—most often defined as stroke occurring under the age of 45 or 50—can be particularly devastating due to long expected life-span ahead and marked socio-economic consequences. Current basic knowledge on ischemic stroke in this age group originates mostly from rather small and imprecise patient series. Regarding emergency treatment, systematic data on use of intravenous thrombolysis are absent. For this Thesis project, we collected detailed clinical and radiological data on all consecutive patients aged 15 to 49 with first-ever ischemic stroke between 1994 and 2007 treated at the Helsinki University Central Hospital. The aims of the study were to define demographic characteristics, risk factors, imaging features, etiology, and long-term mortality and its predictors in this patient population. We additionally sought to investigate, whether intravenous thrombolysis is safe and beneficial for the treatment of acute ischemic stroke in the young. Of our 1008 patients, most were males (ratio 1.7:1), who clearly outnumbered females after the age of 44, but females were preponderant among those aged <30. Occurrence increased exponentially. The most frequent risk factors were dyslipidemia (60%), smoking (44%), and hypertension (39%). Risk factors accumulated in males and along aging. Cardioembolism (20%) and cervicocerebral artery dissection (15%) were the most frequent etiologic subgroups, followed by small-vessel disease (14%), and large-artery atherosclerosis (8%). A total of 33% had undetermined etiology. Left hemisphere strokes were more common in general. Posterior circulation infarcts were more common among those aged <45. Multiple brain infarcts were present in 23% of our patients, 13% had silent infarcts, and 5% had leukoaraiosis. Of those with silent brain infarcts, majority (54%) had only a single lesion, and most of the silent strokes were located in basal ganglia (39%) and subcortical regions (21%). In a logistic regression analysis, type 1 diabetes mellitus in particular predicted the presence of both silent brain infarcts (odds ratio 5.78, 95% confidence interval 2.37-14.10) and leukoaraiosis (9.75; 3.39-28.04). We identified 48 young patients with hemispheric ischemic stroke treated with intravenous tissue plasminogen activator, alteplase. For comparisons, we searched 96 untreated control patients matched by age, gender, and admission stroke severity, as well as 96 alteplase-treated older controls aged 50 to 79 matched by gender and stroke severity. Alteplase-treated young patients recovered more often completely (27% versus 10%, P=0.010) or had only mild residual symptoms (40% versus 22%, P=0.025) compared to age-matched controls. None of the alteplase-treated young patients had symptomatic intracerebral hemorrhage or died within 3-month follow-up. Overall long-term mortality was low in our patient population. Cumulative mortality risks were 2.7% (95% confidence interval 1.5-3.9%) at 1 month, 4.7% (3.1-6.3%) at 1 year, and 10.7% (9.9-11.5%) at 5 years. Among the 30-day survivors who died during the 5-year follow-up, more than half died due to vascular causes. Malignancy, heart failure, heavy drinking, preceding infection, type 1 diabetes, increasing age, and large-artery atherosclerosis causing the index stroke independently predicted 5-year mortality when adjusted for age, gender, relevant risk factors, stroke severity, and etiologic subtype. In sum, young adults with ischemic stroke have distinct demographic patterns and they frequently harbor traditional vascular risk factors. Etiology in the young is extremely diverse, but in as many as one-third the exact cause remains unknown. Silent brain infarcts and leukoaraiosis are not uncommon brain imaging findings in these patients and should not be overlooked due to their potential prognostic relevance. Outcomes in young adults with hemispheric ischemic stroke can safely be improved with intravenous thrombolysis. Furthermore, despite their overall low risk of death after ischemic stroke, several easily recognizable factors—of which most are modifiable—predict higher mortality in the long term in young adults.
Resumo:
Introduction In 2008, the Federal Drug Administration (FDA) required all new glucose-lowering therapies to show cardiovascular safety, and this applies to the dipeptidyl peptidase (DPP)-4 inhibitors (‘gliptins’). At present, there is contradictory evidence on whether the gliptins increase hospitalizations for heart failure. Areas covered This is an evaluation of the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) in high risk cardiovascular subjects with type 2 diabetes [1]. TECOS demonstrated non-inferiority for sitagliptin over placebo for the primary outcome, which was cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. There was no difference in the rate of hospitalization for heart failure between sitagliptin and placebo. Expert Opinion Despite the results of TECOS, debate over the effects of sitagliptin on the rates of hospitalizations for heart failure continues with some recent studies suggesting increased rates. Recently, empagliflozin (an inhibitor of sodium-glucose cotransporter 2) has been shown to reduce cardiovascular outcomes in subjects with type 2 diabetes, including the rates of hospitalization for heart failure. In our opinion, these positive findings with empagliflozin suggest that it should be prescribed in preference to the gliptins, including sitagliptin, unless any positive cardiovascular outcomes are reported for the gliptins.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
Background: Congenital heart defects include a wide range of inborn malformations. Depending on the defect, the life expectancy of a newborn with cardiac anomaly varies from a few days to a normal life span. In most instances surgery, is the only treatment available. The late results of surgery have not been comprehensively investigated. Aims: Mortality, morbidity and the life situation of all Finnish patients who had been operated on for congenital heart defect during childhood were investigated. Methods: Patient and surgical data were gathered from all hospitals that had performed heart surgeries on children. Late mortality and survival data were obtained from the population registry, and the causes of deaths from Statistics Finland. Morbidity of patients operated on during 1953-1989 was assessed by the usage of medicines. The pharmacotherapy data of patients and controls were obtained from the Social Insurance Institute. The life situation of patients was surveyed by mailed questionnaire. Survival, causes of deaths and life situation of patients were compared with those of the general population. Results: A total of 7240 cardiac operations were performed on 6461 children during the first 37 years of cardiac surgery (1953-1989). The number of procedures constantly rose during this period, and the increase continued in later years. The patient material varied over time, as more defects became surgically treatable. During 1953-1989 the operative mortality (death within 30 days of surgery) was 6.9%. In the 1990s a slight rise occurred in early mortality, as increasingly complicated patients were surgically treated. During 2000-2003 practically no defects were beyond the operative range. Thus, the operative mortality of 4.4% was excellent, decreasing even further to 2.0% in 2004-2007. The overall 45-year survival of patients operated on in 1953-1989 was 78%, and the corresponding figure for the general population was 93%. Survival depended on the defect, being worst among patients with univentricular heart. Late survival was also better during the 1990s and at the beginning of the 21st century. Of the 6028 early survivors, 592 died late (>30 days) after surgery. A total of 397 deaths (67%) were related and 185 (31%) unrelated to congenital heart defect. The cause of death was unknown in 10 cases. Of those 5774 patients who survived their first operation and had complete follow-up, 16% were operated on several times. Seventeen percent of patients used medicines for cardiac symptoms (heart failure, arrhythmia, hypertension and coronary disease). Patients risk of using cardiac medicines was 2.16 (Cl 1.97-2.37) times higher than that of controls. Patients also had more genetic syndromes and mental retardation and more often used medicines for asthma and epilepsy. Adult patients who had been operated on as children had coped surprisingly well with their defects. Their level of education was similar and their employment level even higher than expected, and they were living in a steady relationship as often as the general population. Conclusions: Cardiac surgery developed rapidly, and nowadays practically all defects can be treated. The overall survival of all operated patients was 78%, 16% less than that of the general population. However, it was significantly better than the anticipated natural survival. However, many patients had health problems; 16% needed reoperations and 17% cardiac medicines to maintain their condition. Most of the patients assessed their general health as good and lived a normal life.
Resumo:
Myocardial infarction (MI) and heart failure are major causes of morbidity and mortality worldwide. Treatment of MI involves early restoration of blood flow to limit infarct size and preserve cardiac function. MI leads to left ventricular remodeling, which may eventually progress to heart failure, despite the established pharmacological treatment of the disease. To improve outcome of MI, new strategies for protecting the myocardium against ischemic injury and enhancing the recovery and repair of the infarcted heart are needed. Heme oxygenase-1 (HO-1) is a stress-responsive and cytoprotective enzyme catalyzing the degradation of heme into the biologically active reaction products biliverdin/bilirubin, carbon monoxide (CO) and free iron. HO-1 plays a key role in maintaining cellular homeostasis by its antiapoptotic, anti-inflammatory, antioxidative and proangiogenic properties. The present study aimed, first, at evaluating the role of HO-1 as a cardioprotective and prohealing enzyme in experimental rat models and at investigating the potential mechanisms mediating the beneficial effects of HO-1 in the heart. The second aim was to evaluate the role of HO-1 in 231 critically ill intensive care unit (ICU) patients by investigating the association of HO-1 polymorphisms and HO-1 plasma concentrations with illness severity, organ dysfunction and mortality throughout the study population and in the subgroup of cardiac patients. We observed in an experimental rat MI model, that HO-1 expression was induced in the infarcted rat hearts, especially in the infarct and infarct border areas. In addition, pre-emptive HO-1 induction and CO donor pretreatment promoted recovery and repair of the infarcted hearts by differential mechanisms. CO promoted vasculogenesis and formation of new cardiomyocytes by activating c-kit+ stem/progenitor cells via hypoxia-inducible factor 1 alpha, stromal cell-derived factor 1 alpha (SDF-1a) and vascular endothelial growth factor B, whereas HO-1 promoted angiogenesis possibly via SDF-1a. Furthermore, HO-1 protected the heart in the early phase of infarct healing by increasing survival and proliferation of cardiomyocytes. The antiapoptotic effect of HO-1 persisted in the late phases of infarct healing. HO-1 also modulated the production of extracellular matrix components and reduced perivascular fibrosis. Some of these beneficial effects of HO-1 were mediated by CO, e.g. the antiapoptotic effect. However, CO may also have adverse effects on the heart, since it increased the expression of extracellular matrix components. In isolated perfused rat hearts, HO-1 induction improved the recovery of postischemic cardiac function and abrogated reperfusion-induced ventricular fibrillation, possibly in part via connexin 43. We found that HO-1 plasma levels were increased in all critically ill patients, including cardiac patients, and were associated with the degree of organ dysfunction and disease severity. HO-1 plasma concentrations were also higher in ICU and hospital nonsurvivors than in survivors, and the maximum HO-1 concentration was an independent predictor of hospital mortality. Patients with the HO-1 -413T/GT(L)/+99C haplotype had lower HO-1 plasma concentrations and lower incidence of multiple organ dysfunction. However, HO-1 polymorphisms were not associated with ICU or hospital mortality. The present study shows that HO-1 is induced in response to stress in both experimental animal models and severely ill patients. HO-1 played an important role in the recovery and repair of infarcted rat hearts. HO-1 induction and CO donor pretreatment enhanced cardiac regeneration after MI, and HO-1 may protect against pathological left ventricular remodeling. Furthermore, HO-1 induction potentially may protect against I/R injury and cardiac dysfunction in isolated rat hearts. In critically ill ICU patients, HO-1 plasma levels correlate with the degree of organ dysfunction, disease severity, and mortality, suggesting that HO-1 may be useful as a marker of disease severity and in the assessment of outcome of critically ill patients.
Resumo:
Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.
Resumo:
Sydämen vajaatoiminta on erilaisista sydän- ja verisuonisairauksista aiheutuva monimuotoinen oireyhtymä, johon sairastuneiden ja kuolleiden potilaiden määrä on yhä suuri. Sen patofysiologiaan voi kuulua muun muassa sympaattisen hermoston ja reniini-angiotensiini-aldosteroni–järjestelmän aktiivisuutta, huonosti supistuva vasen kammio, sydämen uudelleenmuokkautumista, muutoksia [Ca2+]i:n säätelyssä, kardiomyosyyttien apoptoosia sekä systeeminen tulehdustila. Johonkin osaan sairauden patofysiologiasta eivät nykyiset lääkehoidot riittävästi vaikuta. Klassiset inotroopit lisäävät sydämen supistusvireyttä kasvattamalla solunsisäistä Ca2+-pitoisuutta, mutta ne lisäävät rytmihäiriöriskiä, sydämen hapenkulutusta sekä heikentävät ennustetta. Levosimendaani, kalsiumherkistäjä, lisää sydämen supistusvoimaa [Ca2+]i:ta kohottamatta herkistämällä sydänlihaksen kalsiumin vaikutuksille. Lisäksi levosimendaani avaa sarkolemmaalisia ja mitokondriaalisia K+-kanavia, jotka välittävät vasodilataatiota ja kardioprotektiota. Suurilla annoksilla levosimendaani on selektiivinen PDE3-estäjä. Levosimendaania suositellaan äkillisesti pahentuneen sydämen vajaatoiminnan hoitoon, mutta muitakin lupaavia indikaatioita sille on keksitty. Esimerkiksi kroonisesti annosteltu oraalinen levosimendaani on suojannut kardiovaskulaarijärjestelmää ja parantanut selviytymistä in vivo. Erikoistyössä selvitettiin kroonisesti annostellun oraalisen levosimendaanin, valsartaanin ja näiden kombinaatioterapian vaikutuksia selviytymiseen, verenpaineeseen sekä sydämen hypertrofioitumiseen Dahlin suolaherkillä (Dahl/Rapp) rotilla. Levosimendaanin suojavaikutus ilmeni vähäisempänä kuolleisuutena, mutta ero ei ollut tilastollisesti merkitsevä kontrolliryhmään nähden. Kombinaatioterapia suojasi rottia kardiovaskulaarikuolleisuudelta ja vähensi todennäköisesti verenpaineesta riippuvaisesti sydämen hypertofioitumista niin sydän/kehonpaino–suhteen kuin ultraäänitutkimuksenkin perusteella arvioituna paremmin kuin kumpikaan lääke monoterapiana. Lääkekombinaatio alensi additiivisesti hypertensiota kaikissa mittauspisteissä. Sydämen systolista toimintaa levosimendaani kohensi vain vähäisesti. Dahl/Rapp-rotille kehittyikin pääosin hypertension indusoimaa diastolista sydämen vajaatoimintaa kohonneen IVRT-arvon perusteella. Levosimendaani sekä monoterapiana että kombinaatioterapiana valsartaanin kanssa vähensi sydämen diastolista vajaatoimintaa.
Resumo:
Sydämen krooninen vajaatoiminta on merkittävä maailmanlaajuinen ongelma. Se on erilaisten sydän- ja verisuonisairauksien aiheuttama monimuotoinen oireyhtymä. Sydämen vasemman kammion hypertrofia eli sydämen seinämien paksuuntuminen on yksi keskeinen tekijä, joka voi olla sydämen vajaatoiminnan taustalla. Kohonnut verenpaine on yleisin syy, joka johtaa sydänlihaksen paksuuntumiseen. Tämä johtaa sydämen pumppaustoiminnan häiriintymiseen, erilaisten neurohormonaalisten mekanismien aktivaatioon ja edelleen sydämen vajaatoimintaan. Sydämen vajaatoiminnan neurohormonaalisista mekanismeista tärkeimmät ovat reniini-angiotensiini-aldosteroni-järjestelmän ja sympaattisen hermoston aktivaatio, sydämen rakenteiden uudelleenmuovautuminen, sydänlihassolujen apoptoosi ja systeeminen tulehdustila. Sydämen hypertrofiaa ja sen syntymistä pyritään estämään kohonneen verenpaineen lääkehoidolla. Reniini-angiotensiini-aldosteronijärjestelmällä on keskeinen merkitys sydämen vajaatoiminnassa. Sydämen vajaatoiminnan ennusteeseen vaikuttavista lääkeaineista angiotensiinikonvertasin estäjät (ACEestäjät) ovat säilyttäneet johtoasemansa jo vuosikymmenten ajan. Angiotensiinireseptoreiden salpaajien (AT1-salpaajien) odotettiin syrjäyttävän ACE-estäjät sydämen vajaatoiminnan hoidossa, mutta toistaiseksi niitä pidetään vain vaihtoehtoisina lääkkeinä. Sympaattisen hermoston aktivaatiota vähentävät β-salpaajat ovat vakiinnuttaneet asemansa toiseksi tärkeimpänä lääkeryhmänä. Diureetit ovat paljon käytetty lääkeaineryhmä sydämen vajaatoiminnan hoidossa, mutta niistä ainoastaan aldosteroniantagonisteilla on tutkitusti ennustetta parantavaa vaikutusta. Kroonisen vajaatoiminnan hoidossa käytetään edelleen myös digoksiinia. Tulevaisuudessa sydämen vajaatoiminnan ennusteeseen vaikuttavia lääkeaineita voivat olla reniinin estäjät, neutraaliendopeptidaasin estäjät, vasopressiinin antagonistit tai inflammatroisiin sytokiineihin vaikuttavat molekyylit. Erikoistyön kokeellisessa osiossa tarkoituksena oli tutkia sydämen hypertrofian kehittymistä vatsa-aortta kuristetuilla rotilla ja kalsiumherkistäjä levosimendaanin sekä AT1-salpaaja valsartaanin vaikutuksia hypertrofian kehittymiseen. Kokeellisessa osiossa arvioitiin myös sydämen hypertrofian ja vajaatoiminnan jyrsijämallina käytetyn vatsa-aortan kuristuksen (koarktaation) toimivuutta ja vaikutuksia ultraäänen avulla määritettyihin kardiovaskulaarisiin parametreihin. Vatsa-aortta kuristettiin munuaisvaltimoiden yläpuolelta. Kuristus saa aikaan verenpaineen kohoamisen ja sydämen työtaakan lisääntymisen. Pitkittyessään tila johtaa sydänlihaksen hypertrofiaan ja vajaatoimintaan. 64 eläintä jaettiin ryhmiin, siten että jokaiseen ryhmään tuli kahdeksan eläintä. Ryhmistä kolmelle annettiin lääkeaineena levosimendaania kolmella eri päiväannoksella (0,01 mg/kg; 0,10 mg/kg; 1,00 mg/kg) ja kolmelle valsartaania kolmella eri päiväannoksella (0,10 mg/kg; 1,00 mg/kg; 10,00 mg/kg) juomaveden mukana. Lääkitys aloitettiin leikkauksen jälkeen ja jatkettiin kahdeksan viikon ajan. Kardiovaskulaariset parametrit, kuten isovolumetrinen relaksaatioaika (IVRT), vasemman kammion läpimitta systolessa ja diastolessa sekä seinämäpaksuudet, ejektiofraktio (EF), supistuvuusosuus (FS), minuuttitilavuus (CO) ja iskutilavuus (SV) määritettiin kahdeksan viikon kuluttua leikkauksesta ultraäänitutkimuksen avulla. Lisäksi määritettiin eläinten sydämen paino suhteessa ruumiin painoon. Tuloksia verrattiin ilman lääkehoitoa olleeseen koarktaatioryhmään. Eläinmallin toimivuutta arvioitiin vertaamalla koarktaatioryhmän tuloksia sham-operoidun ryhmän tuloksiin. Levosimendaanilla havaittiin työssä sydämen systolista toimintaa parantava vaikutus. Tämä näkyi tendenssinä parantaa ejektiofraktioita ja vasemman kammion supistuvuusosuuksia. Sydämen diastoliseen toimintaan ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Diastolista toimintaa arvioitiin isovolumetrisen relaksaatioajan muutoksilla. Sydämen hypertrofian kehittymiseen ei kummallakaan lääkeaineella ollut merkittävää vaikutusta. Eläinmallin todettiin mallintavan hyvin sydämen hypetrofiaa ihmisellä, mutta ei niinkään sydämen vajaatoimintaa.
Resumo:
Nanomechanical intervention through electroactuation is an effective strategy to guide stem cell differentiation for tissue engineering and regenerative medicine. In the present study, we elucidate that physical forces exerted by electroactuated gold nanoparticles (GNPs) have a strong influence in regulating the lineage commitment of human mesenchymal stem cells (hMSCs). A novel platform that combines intracellular and extracellular GNPs as nano-manipulators was designed to trigger neurogenic/cardiomyogenic differentiation in hMSCs, in electric field stimulated culture condition. In order to mimic the native microenvironment of nerve and cardiac tissues, hMSCs were treated with physiologically relevant direct current electric field (DC EF) or pulsed electric field (PEF) stimuli, respectively. When exposed to regular intermittent cycles of DC EF stimuli, majority of the GNP actuated hMSCs acquired longer filopodial extensions with multiple branch-points possessing neural-like architecture. Such morphological changes were consistent with higher mRNA expression level for neural-specific markers. On the other hand, PEF elicited cardiomyogenic differentiation, which is commensurate with the tubelike morphological alterations along with the upregulation of cardiac specific markers. The observed effect was significantly promoted even by intracellular actuation and was found to be substrate independent. Further, we have substantiated the participation of oxidative signaling, G0/G1 cell cycle arrest and intracellular calcium Ca2+] elevation as the key upstream regulators dictating GNP assisted hMSC differentiation. Thus, by adopting dual stimulation protocols, we could successfully divert the DC EF exposed cells to differentiate predominantly into neural-like cells and PEF treated cells into cardiomyogenic-like cells, via nanoactuation of GNPs. Such a novel multifaceted approach can be exploited to combat tissue loss following brain injury or heart failure. (C) 2015 Elsevier Ltd. All rights reserved.